This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl.1 | |- X = ( Base ` G ) |
|
| gexcl.2 | |- E = ( gEx ` G ) |
||
| gexid.3 | |- .x. = ( .g ` G ) |
||
| gexid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | gexdvdsi | |- ( ( G e. Grp /\ A e. X /\ E || N ) -> ( N .x. A ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl.1 | |- X = ( Base ` G ) |
|
| 2 | gexcl.2 | |- E = ( gEx ` G ) |
|
| 3 | gexid.3 | |- .x. = ( .g ` G ) |
|
| 4 | gexid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | simp3 | |- ( ( G e. Grp /\ A e. X /\ E || N ) -> E || N ) |
|
| 6 | dvdszrcl | |- ( E || N -> ( E e. ZZ /\ N e. ZZ ) ) |
|
| 7 | divides | |- ( ( E e. ZZ /\ N e. ZZ ) -> ( E || N <-> E. x e. ZZ ( x x. E ) = N ) ) |
|
| 8 | 6 7 | biadanii | |- ( E || N <-> ( ( E e. ZZ /\ N e. ZZ ) /\ E. x e. ZZ ( x x. E ) = N ) ) |
| 9 | 5 8 | sylib | |- ( ( G e. Grp /\ A e. X /\ E || N ) -> ( ( E e. ZZ /\ N e. ZZ ) /\ E. x e. ZZ ( x x. E ) = N ) ) |
| 10 | 9 | simprd | |- ( ( G e. Grp /\ A e. X /\ E || N ) -> E. x e. ZZ ( x x. E ) = N ) |
| 11 | simpl1 | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> G e. Grp ) |
|
| 12 | simpr | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 13 | 9 | simplld | |- ( ( G e. Grp /\ A e. X /\ E || N ) -> E e. ZZ ) |
| 14 | 13 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> E e. ZZ ) |
| 15 | simpl2 | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> A e. X ) |
|
| 16 | 1 3 | mulgass | |- ( ( G e. Grp /\ ( x e. ZZ /\ E e. ZZ /\ A e. X ) ) -> ( ( x x. E ) .x. A ) = ( x .x. ( E .x. A ) ) ) |
| 17 | 11 12 14 15 16 | syl13anc | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( ( x x. E ) .x. A ) = ( x .x. ( E .x. A ) ) ) |
| 18 | 1 2 3 4 | gexid | |- ( A e. X -> ( E .x. A ) = .0. ) |
| 19 | 15 18 | syl | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( E .x. A ) = .0. ) |
| 20 | 19 | oveq2d | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( x .x. ( E .x. A ) ) = ( x .x. .0. ) ) |
| 21 | 1 3 4 | mulgz | |- ( ( G e. Grp /\ x e. ZZ ) -> ( x .x. .0. ) = .0. ) |
| 22 | 21 | 3ad2antl1 | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( x .x. .0. ) = .0. ) |
| 23 | 17 20 22 | 3eqtrd | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( ( x x. E ) .x. A ) = .0. ) |
| 24 | oveq1 | |- ( ( x x. E ) = N -> ( ( x x. E ) .x. A ) = ( N .x. A ) ) |
|
| 25 | 24 | eqeq1d | |- ( ( x x. E ) = N -> ( ( ( x x. E ) .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
| 26 | 23 25 | syl5ibcom | |- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( ( x x. E ) = N -> ( N .x. A ) = .0. ) ) |
| 27 | 26 | rexlimdva | |- ( ( G e. Grp /\ A e. X /\ E || N ) -> ( E. x e. ZZ ( x x. E ) = N -> ( N .x. A ) = .0. ) ) |
| 28 | 10 27 | mpd | |- ( ( G e. Grp /\ A e. X /\ E || N ) -> ( N .x. A ) = .0. ) |