This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvid.u | |- .0. = ( 0g ` G ) |
|
| grpinvid.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvid | |- ( G e. Grp -> ( N ` .0. ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvid.u | |- .0. = ( 0g ` G ) |
|
| 2 | grpinvid.n | |- N = ( invg ` G ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | 3 1 | grpidcl | |- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 3 5 1 | grplid | |- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 7 | 4 6 | mpdan | |- ( G e. Grp -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 8 | 3 5 1 2 | grpinvid1 | |- ( ( G e. Grp /\ .0. e. ( Base ` G ) /\ .0. e. ( Base ` G ) ) -> ( ( N ` .0. ) = .0. <-> ( .0. ( +g ` G ) .0. ) = .0. ) ) |
| 9 | 4 4 8 | mpd3an23 | |- ( G e. Grp -> ( ( N ` .0. ) = .0. <-> ( .0. ( +g ` G ) .0. ) = .0. ) ) |
| 10 | 7 9 | mpbird | |- ( G e. Grp -> ( N ` .0. ) = .0. ) |