This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnncl.b | |- B = ( Base ` G ) |
|
| mulgnncl.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | |- B = ( Base ` G ) |
|
| 2 | mulgnncl.t | |- .x. = ( .g ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | id | |- ( G e. Grp -> G e. Grp ) |
|
| 5 | ssidd | |- ( G e. Grp -> B C_ B ) |
|
| 6 | 1 3 | grpcl | |- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) e. B ) |
| 7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 8 | 1 7 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 9 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 10 | 1 9 | grpinvcl | |- ( ( G e. Grp /\ x e. B ) -> ( ( invg ` G ) ` x ) e. B ) |
| 11 | 1 2 3 4 5 6 7 8 9 10 | mulgsubcl | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) |