This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodcl | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 2 | nnrp | |- ( B e. NN -> B e. RR+ ) |
|
| 3 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 5 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 6 | 5 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. ZZ ) |
| 7 | nndivre | |- ( ( A e. RR /\ B e. NN ) -> ( A / B ) e. RR ) |
|
| 8 | 1 7 | sylan | |- ( ( A e. ZZ /\ B e. NN ) -> ( A / B ) e. RR ) |
| 9 | 8 | flcld | |- ( ( A e. ZZ /\ B e. NN ) -> ( |_ ` ( A / B ) ) e. ZZ ) |
| 10 | 6 9 | zmulcld | |- ( ( A e. ZZ /\ B e. NN ) -> ( B x. ( |_ ` ( A / B ) ) ) e. ZZ ) |
| 11 | zsubcl | |- ( ( A e. ZZ /\ ( B x. ( |_ ` ( A / B ) ) ) e. ZZ ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) e. ZZ ) |
|
| 12 | 10 11 | syldan | |- ( ( A e. ZZ /\ B e. NN ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) e. ZZ ) |
| 13 | 4 12 | eqeltrd | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. ZZ ) |
| 14 | modge0 | |- ( ( A e. RR /\ B e. RR+ ) -> 0 <_ ( A mod B ) ) |
|
| 15 | 1 2 14 | syl2an | |- ( ( A e. ZZ /\ B e. NN ) -> 0 <_ ( A mod B ) ) |
| 16 | elnn0z | |- ( ( A mod B ) e. NN0 <-> ( ( A mod B ) e. ZZ /\ 0 <_ ( A mod B ) ) ) |
|
| 17 | 13 15 16 | sylanbrc | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. NN0 ) |