This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmul1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 2 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 3 | mulcom | |- ( ( N e. CC /\ M e. CC ) -> ( N x. M ) = ( M x. N ) ) |
|
| 4 | 1 2 3 | syl2anr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N x. M ) = ( M x. N ) ) |
| 5 | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
|
| 6 | dvds0lem | |- ( ( ( N e. ZZ /\ M e. ZZ /\ ( M x. N ) e. ZZ ) /\ ( N x. M ) = ( M x. N ) ) -> M || ( M x. N ) ) |
|
| 7 | 6 | ex | |- ( ( N e. ZZ /\ M e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( N x. M ) = ( M x. N ) -> M || ( M x. N ) ) ) |
| 8 | 7 | 3com12 | |- ( ( M e. ZZ /\ N e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( N x. M ) = ( M x. N ) -> M || ( M x. N ) ) ) |
| 9 | 5 8 | mpd3an3 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N x. M ) = ( M x. N ) -> M || ( M x. N ) ) ) |
| 10 | 4 9 | mpd | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M x. N ) ) |