This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of group multiples over subtraction for group elements, subdir analog. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgsubdir.b | |- B = ( Base ` G ) |
|
| mulgsubdir.t | |- .x. = ( .g ` G ) |
||
| mulgsubdir.d | |- .- = ( -g ` G ) |
||
| Assertion | mulgsubdir | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M - N ) .x. X ) = ( ( M .x. X ) .- ( N .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgsubdir.b | |- B = ( Base ` G ) |
|
| 2 | mulgsubdir.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgsubdir.d | |- .- = ( -g ` G ) |
|
| 4 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 1 2 5 | mulgdir | |- ( ( G e. Grp /\ ( M e. ZZ /\ -u N e. ZZ /\ X e. B ) ) -> ( ( M + -u N ) .x. X ) = ( ( M .x. X ) ( +g ` G ) ( -u N .x. X ) ) ) |
| 7 | 4 6 | syl3anr2 | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M + -u N ) .x. X ) = ( ( M .x. X ) ( +g ` G ) ( -u N .x. X ) ) ) |
| 8 | simpr1 | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> M e. ZZ ) |
|
| 9 | 8 | zcnd | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> M e. CC ) |
| 10 | simpr2 | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> N e. ZZ ) |
|
| 11 | 10 | zcnd | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> N e. CC ) |
| 12 | 9 11 | negsubd | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( M + -u N ) = ( M - N ) ) |
| 13 | 12 | oveq1d | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M + -u N ) .x. X ) = ( ( M - N ) .x. X ) ) |
| 14 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 15 | 1 2 14 | mulgneg | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( ( invg ` G ) ` ( N .x. X ) ) ) |
| 16 | 15 | 3adant3r1 | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( -u N .x. X ) = ( ( invg ` G ) ` ( N .x. X ) ) ) |
| 17 | 16 | oveq2d | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M .x. X ) ( +g ` G ) ( -u N .x. X ) ) = ( ( M .x. X ) ( +g ` G ) ( ( invg ` G ) ` ( N .x. X ) ) ) ) |
| 18 | 1 2 | mulgcl | |- ( ( G e. Grp /\ M e. ZZ /\ X e. B ) -> ( M .x. X ) e. B ) |
| 19 | 18 | 3adant3r2 | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( M .x. X ) e. B ) |
| 20 | 1 2 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) |
| 21 | 20 | 3adant3r1 | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( N .x. X ) e. B ) |
| 22 | 1 5 14 3 | grpsubval | |- ( ( ( M .x. X ) e. B /\ ( N .x. X ) e. B ) -> ( ( M .x. X ) .- ( N .x. X ) ) = ( ( M .x. X ) ( +g ` G ) ( ( invg ` G ) ` ( N .x. X ) ) ) ) |
| 23 | 19 21 22 | syl2anc | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M .x. X ) .- ( N .x. X ) ) = ( ( M .x. X ) ( +g ` G ) ( ( invg ` G ) ` ( N .x. X ) ) ) ) |
| 24 | 17 23 | eqtr4d | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M .x. X ) ( +g ` G ) ( -u N .x. X ) ) = ( ( M .x. X ) .- ( N .x. X ) ) ) |
| 25 | 7 13 24 | 3eqtr3d | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M - N ) .x. X ) = ( ( M .x. X ) .- ( N .x. X ) ) ) |