This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnncl.b | |- B = ( Base ` G ) |
|
| mulgnncl.t | |- .x. = ( .g ` G ) |
||
| mulgneg.i | |- I = ( invg ` G ) |
||
| Assertion | mulgneg | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | |- B = ( Base ` G ) |
|
| 2 | mulgnncl.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgneg.i | |- I = ( invg ` G ) |
|
| 4 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 5 | simpr | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N e. NN ) -> N e. NN ) |
|
| 6 | simpl3 | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N e. NN ) -> X e. B ) |
|
| 7 | 1 2 3 | mulgnegnn | |- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 8 | 5 6 7 | syl2anc | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N e. NN ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 9 | simpl1 | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> G e. Grp ) |
|
| 10 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 11 | 10 3 | grpinvid | |- ( G e. Grp -> ( I ` ( 0g ` G ) ) = ( 0g ` G ) ) |
| 12 | 9 11 | syl | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( I ` ( 0g ` G ) ) = ( 0g ` G ) ) |
| 13 | simpr | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> N = 0 ) |
|
| 14 | 13 | oveq1d | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( N .x. X ) = ( 0 .x. X ) ) |
| 15 | simpl3 | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> X e. B ) |
|
| 16 | 1 10 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 17 | 15 16 | syl | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 18 | 14 17 | eqtrd | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( N .x. X ) = ( 0g ` G ) ) |
| 19 | 18 | fveq2d | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( I ` ( N .x. X ) ) = ( I ` ( 0g ` G ) ) ) |
| 20 | 13 | negeqd | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> -u N = -u 0 ) |
| 21 | neg0 | |- -u 0 = 0 |
|
| 22 | 20 21 | eqtrdi | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> -u N = 0 ) |
| 23 | 22 | oveq1d | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( -u N .x. X ) = ( 0 .x. X ) ) |
| 24 | 23 17 | eqtrd | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( -u N .x. X ) = ( 0g ` G ) ) |
| 25 | 12 19 24 | 3eqtr4rd | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N = 0 ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 26 | 8 25 | jaodan | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. NN \/ N = 0 ) ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 27 | 4 26 | sylan2b | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ N e. NN0 ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 28 | simpl1 | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> G e. Grp ) |
|
| 29 | simprr | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN ) |
|
| 30 | 29 | nnzd | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 31 | simpl3 | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> X e. B ) |
|
| 32 | 1 2 | mulgcl | |- ( ( G e. Grp /\ -u N e. ZZ /\ X e. B ) -> ( -u N .x. X ) e. B ) |
| 33 | 28 30 31 32 | syl3anc | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u N .x. X ) e. B ) |
| 34 | 1 3 | grpinvinv | |- ( ( G e. Grp /\ ( -u N .x. X ) e. B ) -> ( I ` ( I ` ( -u N .x. X ) ) ) = ( -u N .x. X ) ) |
| 35 | 28 33 34 | syl2anc | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( I ` ( I ` ( -u N .x. X ) ) ) = ( -u N .x. X ) ) |
| 36 | 1 2 3 | mulgnegnn | |- ( ( -u N e. NN /\ X e. B ) -> ( -u -u N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 37 | 29 31 36 | syl2anc | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 38 | simprl | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
|
| 39 | 38 | recnd | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 40 | 39 | negnegd | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u -u N = N ) |
| 41 | 40 | oveq1d | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( N .x. X ) ) |
| 42 | 37 41 | eqtr3d | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( I ` ( -u N .x. X ) ) = ( N .x. X ) ) |
| 43 | 42 | fveq2d | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( I ` ( I ` ( -u N .x. X ) ) ) = ( I ` ( N .x. X ) ) ) |
| 44 | 35 43 | eqtr3d | |- ( ( ( G e. Grp /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
| 45 | simp2 | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> N e. ZZ ) |
|
| 46 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 47 | 45 46 | sylib | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 48 | 27 44 47 | mpjaodan | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |