This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015) (Proof shortened by SN, 8-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinv.b | |- B = ( Base ` G ) |
|
| grpinvinv.n | |- N = ( invg ` G ) |
||
| grpinv11.g | |- ( ph -> G e. Grp ) |
||
| grpinv11.x | |- ( ph -> X e. B ) |
||
| grpinv11.y | |- ( ph -> Y e. B ) |
||
| Assertion | grpinv11 | |- ( ph -> ( ( N ` X ) = ( N ` Y ) <-> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | |- B = ( Base ` G ) |
|
| 2 | grpinvinv.n | |- N = ( invg ` G ) |
|
| 3 | grpinv11.g | |- ( ph -> G e. Grp ) |
|
| 4 | grpinv11.x | |- ( ph -> X e. B ) |
|
| 5 | grpinv11.y | |- ( ph -> Y e. B ) |
|
| 6 | fveq2 | |- ( ( N ` X ) = ( N ` Y ) -> ( N ` ( N ` X ) ) = ( N ` ( N ` Y ) ) ) |
|
| 7 | 1 2 | grpinvinv | |- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
| 8 | 3 4 7 | syl2anc | |- ( ph -> ( N ` ( N ` X ) ) = X ) |
| 9 | 1 2 | grpinvinv | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` ( N ` Y ) ) = Y ) |
| 10 | 3 5 9 | syl2anc | |- ( ph -> ( N ` ( N ` Y ) ) = Y ) |
| 11 | 8 10 | eqeq12d | |- ( ph -> ( ( N ` ( N ` X ) ) = ( N ` ( N ` Y ) ) <-> X = Y ) ) |
| 12 | 6 11 | imbitrid | |- ( ph -> ( ( N ` X ) = ( N ` Y ) -> X = Y ) ) |
| 13 | fveq2 | |- ( X = Y -> ( N ` X ) = ( N ` Y ) ) |
|
| 14 | 12 13 | impbid1 | |- ( ph -> ( ( N ` X ) = ( N ` Y ) <-> X = Y ) ) |