This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in ApostolNT p. 106. (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsval3 | |- ( ( M e. NN /\ N e. ZZ ) -> ( M || N <-> ( N mod M ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 2 | nnne0 | |- ( M e. NN -> M =/= 0 ) |
|
| 3 | 1 2 | jca | |- ( M e. NN -> ( M e. ZZ /\ M =/= 0 ) ) |
| 4 | dvdsval2 | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
|
| 5 | 4 | 3expa | |- ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
| 6 | 3 5 | sylan | |- ( ( M e. NN /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
| 7 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 8 | nnrp | |- ( M e. NN -> M e. RR+ ) |
|
| 9 | mod0 | |- ( ( N e. RR /\ M e. RR+ ) -> ( ( N mod M ) = 0 <-> ( N / M ) e. ZZ ) ) |
|
| 10 | 7 8 9 | syl2anr | |- ( ( M e. NN /\ N e. ZZ ) -> ( ( N mod M ) = 0 <-> ( N / M ) e. ZZ ) ) |
| 11 | 6 10 | bitr4d | |- ( ( M e. NN /\ N e. ZZ ) -> ( M || N <-> ( N mod M ) = 0 ) ) |