This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is relatively prime to M and to N , it is also relatively prime to their product. (Contributed by Mario Carneiro, 24-Feb-2014) (Proof shortened by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpmul | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgcddvds | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
|
| 2 | oveq12 | |- ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) = ( 1 x. 1 ) ) |
|
| 3 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 4 | 2 3 | eqtrdi | |- ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( ( K gcd M ) x. ( K gcd N ) ) = 1 ) |
| 5 | 4 | breq2d | |- ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) <-> ( K gcd ( M x. N ) ) || 1 ) ) |
| 6 | 1 5 | syl5ibcom | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) || 1 ) ) |
| 7 | simp1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
|
| 8 | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
|
| 9 | 8 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
| 10 | 7 9 | gcdcld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) e. NN0 ) |
| 11 | dvds1 | |- ( ( K gcd ( M x. N ) ) e. NN0 -> ( ( K gcd ( M x. N ) ) || 1 <-> ( K gcd ( M x. N ) ) = 1 ) ) |
|
| 12 | 10 11 | syl | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd ( M x. N ) ) || 1 <-> ( K gcd ( M x. N ) ) = 1 ) ) |
| 13 | 6 12 | sylibd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K gcd M ) = 1 /\ ( K gcd N ) = 1 ) -> ( K gcd ( M x. N ) ) = 1 ) ) |