This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for modulo. (Contributed by NM, 29-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modabs2 | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) mod B ) = ( A mod B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 2 | 1 | leidd | |- ( B e. RR+ -> B <_ B ) |
| 3 | 2 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B <_ B ) |
| 4 | modabs | |- ( ( ( A e. RR /\ B e. RR+ /\ B e. RR+ ) /\ B <_ B ) -> ( ( A mod B ) mod B ) = ( A mod B ) ) |
|
| 5 | 4 | ex | |- ( ( A e. RR /\ B e. RR+ /\ B e. RR+ ) -> ( B <_ B -> ( ( A mod B ) mod B ) = ( A mod B ) ) ) |
| 6 | 5 | 3anidm23 | |- ( ( A e. RR /\ B e. RR+ ) -> ( B <_ B -> ( ( A mod B ) mod B ) = ( A mod B ) ) ) |
| 7 | 3 6 | mpd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) mod B ) = ( A mod B ) ) |