This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eulerth . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eulerth.1 | |- ( ph -> ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) ) |
|
| eulerth.2 | |- S = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } |
||
| eulerth.3 | |- T = ( 1 ... ( phi ` N ) ) |
||
| eulerth.4 | |- ( ph -> F : T -1-1-onto-> S ) |
||
| eulerth.5 | |- G = ( x e. T |-> ( ( A x. ( F ` x ) ) mod N ) ) |
||
| Assertion | eulerthlem1 | |- ( ph -> G : T --> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerth.1 | |- ( ph -> ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) ) |
|
| 2 | eulerth.2 | |- S = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } |
|
| 3 | eulerth.3 | |- T = ( 1 ... ( phi ` N ) ) |
|
| 4 | eulerth.4 | |- ( ph -> F : T -1-1-onto-> S ) |
|
| 5 | eulerth.5 | |- G = ( x e. T |-> ( ( A x. ( F ` x ) ) mod N ) ) |
|
| 6 | 1 | simp2d | |- ( ph -> A e. ZZ ) |
| 7 | 6 | adantr | |- ( ( ph /\ x e. T ) -> A e. ZZ ) |
| 8 | f1of | |- ( F : T -1-1-onto-> S -> F : T --> S ) |
|
| 9 | 4 8 | syl | |- ( ph -> F : T --> S ) |
| 10 | 9 | ffvelcdmda | |- ( ( ph /\ x e. T ) -> ( F ` x ) e. S ) |
| 11 | oveq1 | |- ( y = ( F ` x ) -> ( y gcd N ) = ( ( F ` x ) gcd N ) ) |
|
| 12 | 11 | eqeq1d | |- ( y = ( F ` x ) -> ( ( y gcd N ) = 1 <-> ( ( F ` x ) gcd N ) = 1 ) ) |
| 13 | 12 2 | elrab2 | |- ( ( F ` x ) e. S <-> ( ( F ` x ) e. ( 0 ..^ N ) /\ ( ( F ` x ) gcd N ) = 1 ) ) |
| 14 | 10 13 | sylib | |- ( ( ph /\ x e. T ) -> ( ( F ` x ) e. ( 0 ..^ N ) /\ ( ( F ` x ) gcd N ) = 1 ) ) |
| 15 | 14 | simpld | |- ( ( ph /\ x e. T ) -> ( F ` x ) e. ( 0 ..^ N ) ) |
| 16 | elfzoelz | |- ( ( F ` x ) e. ( 0 ..^ N ) -> ( F ` x ) e. ZZ ) |
|
| 17 | 15 16 | syl | |- ( ( ph /\ x e. T ) -> ( F ` x ) e. ZZ ) |
| 18 | 7 17 | zmulcld | |- ( ( ph /\ x e. T ) -> ( A x. ( F ` x ) ) e. ZZ ) |
| 19 | 1 | simp1d | |- ( ph -> N e. NN ) |
| 20 | 19 | adantr | |- ( ( ph /\ x e. T ) -> N e. NN ) |
| 21 | zmodfzo | |- ( ( ( A x. ( F ` x ) ) e. ZZ /\ N e. NN ) -> ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) ) |
|
| 22 | 18 20 21 | syl2anc | |- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) ) |
| 23 | modgcd | |- ( ( ( A x. ( F ` x ) ) e. ZZ /\ N e. NN ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = ( ( A x. ( F ` x ) ) gcd N ) ) |
|
| 24 | 18 20 23 | syl2anc | |- ( ( ph /\ x e. T ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = ( ( A x. ( F ` x ) ) gcd N ) ) |
| 25 | 19 | nnzd | |- ( ph -> N e. ZZ ) |
| 26 | 25 | adantr | |- ( ( ph /\ x e. T ) -> N e. ZZ ) |
| 27 | 18 26 | gcdcomd | |- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) gcd N ) = ( N gcd ( A x. ( F ` x ) ) ) ) |
| 28 | 25 6 | gcdcomd | |- ( ph -> ( N gcd A ) = ( A gcd N ) ) |
| 29 | 1 | simp3d | |- ( ph -> ( A gcd N ) = 1 ) |
| 30 | 28 29 | eqtrd | |- ( ph -> ( N gcd A ) = 1 ) |
| 31 | 30 | adantr | |- ( ( ph /\ x e. T ) -> ( N gcd A ) = 1 ) |
| 32 | 26 17 | gcdcomd | |- ( ( ph /\ x e. T ) -> ( N gcd ( F ` x ) ) = ( ( F ` x ) gcd N ) ) |
| 33 | 14 | simprd | |- ( ( ph /\ x e. T ) -> ( ( F ` x ) gcd N ) = 1 ) |
| 34 | 32 33 | eqtrd | |- ( ( ph /\ x e. T ) -> ( N gcd ( F ` x ) ) = 1 ) |
| 35 | rpmul | |- ( ( N e. ZZ /\ A e. ZZ /\ ( F ` x ) e. ZZ ) -> ( ( ( N gcd A ) = 1 /\ ( N gcd ( F ` x ) ) = 1 ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) ) |
|
| 36 | 26 7 17 35 | syl3anc | |- ( ( ph /\ x e. T ) -> ( ( ( N gcd A ) = 1 /\ ( N gcd ( F ` x ) ) = 1 ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) ) |
| 37 | 31 34 36 | mp2and | |- ( ( ph /\ x e. T ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) |
| 38 | 24 27 37 | 3eqtrd | |- ( ( ph /\ x e. T ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) |
| 39 | oveq1 | |- ( y = ( ( A x. ( F ` x ) ) mod N ) -> ( y gcd N ) = ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) ) |
|
| 40 | 39 | eqeq1d | |- ( y = ( ( A x. ( F ` x ) ) mod N ) -> ( ( y gcd N ) = 1 <-> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) ) |
| 41 | 40 2 | elrab2 | |- ( ( ( A x. ( F ` x ) ) mod N ) e. S <-> ( ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) /\ ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) ) |
| 42 | 22 38 41 | sylanbrc | |- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) mod N ) e. S ) |
| 43 | 42 5 | fmptd | |- ( ph -> G : T --> S ) |