This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma ): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in ApostolNT p. 16. Generalization of euclemma . (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by AV, 10-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprmdvds | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M x. N ) /\ ( K gcd M ) = 1 ) -> K || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 2 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 3 | mulcom | |- ( ( M e. CC /\ N e. CC ) -> ( M x. N ) = ( N x. M ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) = ( N x. M ) ) |
| 5 | 4 | breq2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. M ) ) ) |
| 6 | dvdsmulgcd | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( K || ( N x. M ) <-> K || ( N x. ( M gcd K ) ) ) ) |
|
| 7 | 6 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( N x. M ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 8 | 5 7 | bitrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 9 | 8 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 10 | 9 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 11 | gcdcom | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K gcd M ) = ( M gcd K ) ) |
|
| 12 | 11 | 3adant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd M ) = ( M gcd K ) ) |
| 13 | 12 | eqeq1d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 <-> ( M gcd K ) = 1 ) ) |
| 14 | oveq2 | |- ( ( M gcd K ) = 1 -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) |
|
| 15 | 13 14 | biimtrdi | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) ) |
| 16 | 15 | imp | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) |
| 17 | 2 | mulridd | |- ( N e. ZZ -> ( N x. 1 ) = N ) |
| 18 | 17 | 3ad2ant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( N x. 1 ) = N ) |
| 19 | 18 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. 1 ) = N ) |
| 20 | 16 19 | eqtrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. ( M gcd K ) ) = N ) |
| 21 | 20 | breq2d | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( N x. ( M gcd K ) ) <-> K || N ) ) |
| 22 | 10 21 | bitrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) <-> K || N ) ) |
| 23 | 22 | biimpd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) -> K || N ) ) |
| 24 | 23 | ex | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 -> ( K || ( M x. N ) -> K || N ) ) ) |
| 25 | 24 | impcomd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M x. N ) /\ ( K gcd M ) = 1 ) -> K || N ) ) |