This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010) (Revised by Mario Carneiro, 27-Feb-2014) Avoid ax-pow . (Revised by BTernaryTau, 4-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1finf1o | |- ( ( A ~~ B /\ B e. Fin ) -> ( F : A -1-1-> B <-> F : A -1-1-onto-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -1-1-> B ) |
|
| 2 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 3 | 2 | adantl | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A --> B ) |
| 4 | 3 | ffnd | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F Fn A ) |
| 5 | simpll | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> A ~~ B ) |
|
| 6 | 3 | frnd | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ran F C_ B ) |
| 7 | df-pss | |- ( ran F C. B <-> ( ran F C_ B /\ ran F =/= B ) ) |
|
| 8 | 7 | baib | |- ( ran F C_ B -> ( ran F C. B <-> ran F =/= B ) ) |
| 9 | 6 8 | syl | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B <-> ran F =/= B ) ) |
| 10 | php3 | |- ( ( B e. Fin /\ ran F C. B ) -> ran F ~< B ) |
|
| 11 | 10 | ex | |- ( B e. Fin -> ( ran F C. B -> ran F ~< B ) ) |
| 12 | 11 | ad2antlr | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> ran F ~< B ) ) |
| 13 | enfii | |- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin ) |
|
| 14 | 13 | ancoms | |- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
| 15 | f1f1orn | |- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
|
| 16 | f1oenfi | |- ( ( A e. Fin /\ F : A -1-1-onto-> ran F ) -> A ~~ ran F ) |
|
| 17 | 14 15 16 | syl2an | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> A ~~ ran F ) |
| 18 | endom | |- ( A ~~ ran F -> A ~<_ ran F ) |
|
| 19 | domsdomtrfi | |- ( ( A e. Fin /\ A ~<_ ran F /\ ran F ~< B ) -> A ~< B ) |
|
| 20 | 18 19 | syl3an2 | |- ( ( A e. Fin /\ A ~~ ran F /\ ran F ~< B ) -> A ~< B ) |
| 21 | 20 | 3expia | |- ( ( A e. Fin /\ A ~~ ran F ) -> ( ran F ~< B -> A ~< B ) ) |
| 22 | 14 17 21 | syl2an2r | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F ~< B -> A ~< B ) ) |
| 23 | 12 22 | syld | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> A ~< B ) ) |
| 24 | sdomnen | |- ( A ~< B -> -. A ~~ B ) |
|
| 25 | 23 24 | syl6 | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F C. B -> -. A ~~ B ) ) |
| 26 | 9 25 | sylbird | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( ran F =/= B -> -. A ~~ B ) ) |
| 27 | 26 | necon4ad | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ( A ~~ B -> ran F = B ) ) |
| 28 | 5 27 | mpd | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> ran F = B ) |
| 29 | df-fo | |- ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) |
|
| 30 | 4 28 29 | sylanbrc | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -onto-> B ) |
| 31 | df-f1o | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
|
| 32 | 1 30 31 | sylanbrc | |- ( ( ( A ~~ B /\ B e. Fin ) /\ F : A -1-1-> B ) -> F : A -1-1-onto-> B ) |
| 33 | 32 | ex | |- ( ( A ~~ B /\ B e. Fin ) -> ( F : A -1-1-> B -> F : A -1-1-onto-> B ) ) |
| 34 | f1of1 | |- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
|
| 35 | 33 34 | impbid1 | |- ( ( A ~~ B /\ B e. Fin ) -> ( F : A -1-1-> B <-> F : A -1-1-onto-> B ) ) |