This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the modulo operation. Note that the multiplier C must be an integer. (Contributed by NM, 12-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmul1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | |- ( ( A e. RR /\ D e. RR+ ) -> ( A mod D ) = ( A - ( D x. ( |_ ` ( A / D ) ) ) ) ) |
|
| 2 | modval | |- ( ( B e. RR /\ D e. RR+ ) -> ( B mod D ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) |
|
| 3 | 1 2 | eqeqan12d | |- ( ( ( A e. RR /\ D e. RR+ ) /\ ( B e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 4 | 3 | anandirs | |- ( ( ( A e. RR /\ B e. RR ) /\ D e. RR+ ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 5 | 4 | adantrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 6 | oveq1 | |- ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) |
|
| 7 | 5 6 | biimtrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) ) |
| 8 | rpcn | |- ( D e. RR+ -> D e. CC ) |
|
| 9 | 8 | ad2antll | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> D e. CC ) |
| 10 | zcn | |- ( C e. ZZ -> C e. CC ) |
|
| 11 | 10 | ad2antrl | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> C e. CC ) |
| 12 | rerpdivcl | |- ( ( A e. RR /\ D e. RR+ ) -> ( A / D ) e. RR ) |
|
| 13 | 12 | flcld | |- ( ( A e. RR /\ D e. RR+ ) -> ( |_ ` ( A / D ) ) e. ZZ ) |
| 14 | 13 | zcnd | |- ( ( A e. RR /\ D e. RR+ ) -> ( |_ ` ( A / D ) ) e. CC ) |
| 15 | 14 | adantrl | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( |_ ` ( A / D ) ) e. CC ) |
| 16 | 9 11 15 | mulassd | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( D x. C ) x. ( |_ ` ( A / D ) ) ) = ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) |
| 17 | 9 11 15 | mul32d | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( D x. C ) x. ( |_ ` ( A / D ) ) ) = ( ( D x. ( |_ ` ( A / D ) ) ) x. C ) ) |
| 18 | 16 17 | eqtr3d | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) = ( ( D x. ( |_ ` ( A / D ) ) ) x. C ) ) |
| 19 | 18 | oveq2d | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( A x. C ) - ( ( D x. ( |_ ` ( A / D ) ) ) x. C ) ) ) |
| 20 | recn | |- ( A e. RR -> A e. CC ) |
|
| 21 | 20 | adantr | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> A e. CC ) |
| 22 | 8 | adantl | |- ( ( A e. RR /\ D e. RR+ ) -> D e. CC ) |
| 23 | 22 14 | mulcld | |- ( ( A e. RR /\ D e. RR+ ) -> ( D x. ( |_ ` ( A / D ) ) ) e. CC ) |
| 24 | 23 | adantrl | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( D x. ( |_ ` ( A / D ) ) ) e. CC ) |
| 25 | 21 24 11 | subdird | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) = ( ( A x. C ) - ( ( D x. ( |_ ` ( A / D ) ) ) x. C ) ) ) |
| 26 | 19 25 | eqtr4d | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) ) |
| 27 | 26 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) ) |
| 28 | 8 | ad2antll | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> D e. CC ) |
| 29 | 10 | ad2antrl | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> C e. CC ) |
| 30 | rerpdivcl | |- ( ( B e. RR /\ D e. RR+ ) -> ( B / D ) e. RR ) |
|
| 31 | 30 | flcld | |- ( ( B e. RR /\ D e. RR+ ) -> ( |_ ` ( B / D ) ) e. ZZ ) |
| 32 | 31 | zcnd | |- ( ( B e. RR /\ D e. RR+ ) -> ( |_ ` ( B / D ) ) e. CC ) |
| 33 | 32 | adantrl | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( |_ ` ( B / D ) ) e. CC ) |
| 34 | 28 29 33 | mulassd | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( D x. C ) x. ( |_ ` ( B / D ) ) ) = ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) |
| 35 | 28 29 33 | mul32d | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( D x. C ) x. ( |_ ` ( B / D ) ) ) = ( ( D x. ( |_ ` ( B / D ) ) ) x. C ) ) |
| 36 | 34 35 | eqtr3d | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) = ( ( D x. ( |_ ` ( B / D ) ) ) x. C ) ) |
| 37 | 36 | oveq2d | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) = ( ( B x. C ) - ( ( D x. ( |_ ` ( B / D ) ) ) x. C ) ) ) |
| 38 | recn | |- ( B e. RR -> B e. CC ) |
|
| 39 | 38 | adantr | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> B e. CC ) |
| 40 | 8 | adantl | |- ( ( B e. RR /\ D e. RR+ ) -> D e. CC ) |
| 41 | 40 32 | mulcld | |- ( ( B e. RR /\ D e. RR+ ) -> ( D x. ( |_ ` ( B / D ) ) ) e. CC ) |
| 42 | 41 | adantrl | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( D x. ( |_ ` ( B / D ) ) ) e. CC ) |
| 43 | 39 42 29 | subdird | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) = ( ( B x. C ) - ( ( D x. ( |_ ` ( B / D ) ) ) x. C ) ) ) |
| 44 | 37 43 | eqtr4d | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) |
| 45 | 44 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) |
| 46 | 27 45 | eqeq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) <-> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) ) |
| 47 | 7 46 | sylibrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) ) ) |
| 48 | oveq1 | |- ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) ) |
|
| 49 | zre | |- ( C e. ZZ -> C e. RR ) |
|
| 50 | remulcl | |- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
|
| 51 | 49 50 | sylan2 | |- ( ( A e. RR /\ C e. ZZ ) -> ( A x. C ) e. RR ) |
| 52 | 51 | adantrr | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( A x. C ) e. RR ) |
| 53 | simprr | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> D e. RR+ ) |
|
| 54 | simprl | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> C e. ZZ ) |
|
| 55 | 13 | adantrl | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( |_ ` ( A / D ) ) e. ZZ ) |
| 56 | 54 55 | zmulcld | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( C x. ( |_ ` ( A / D ) ) ) e. ZZ ) |
| 57 | modcyc2 | |- ( ( ( A x. C ) e. RR /\ D e. RR+ /\ ( C x. ( |_ ` ( A / D ) ) ) e. ZZ ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( A x. C ) mod D ) ) |
|
| 58 | 52 53 56 57 | syl3anc | |- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( A x. C ) mod D ) ) |
| 59 | 58 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( A x. C ) mod D ) ) |
| 60 | remulcl | |- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
|
| 61 | 49 60 | sylan2 | |- ( ( B e. RR /\ C e. ZZ ) -> ( B x. C ) e. RR ) |
| 62 | 61 | adantrr | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( B x. C ) e. RR ) |
| 63 | simprr | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> D e. RR+ ) |
|
| 64 | simprl | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> C e. ZZ ) |
|
| 65 | 31 | adantrl | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( |_ ` ( B / D ) ) e. ZZ ) |
| 66 | 64 65 | zmulcld | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( C x. ( |_ ` ( B / D ) ) ) e. ZZ ) |
| 67 | modcyc2 | |- ( ( ( B x. C ) e. RR /\ D e. RR+ /\ ( C x. ( |_ ` ( B / D ) ) ) e. ZZ ) -> ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) = ( ( B x. C ) mod D ) ) |
|
| 68 | 62 63 66 67 | syl3anc | |- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) = ( ( B x. C ) mod D ) ) |
| 69 | 68 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) = ( ( B x. C ) mod D ) ) |
| 70 | 59 69 | eqeq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) <-> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) ) |
| 71 | 48 70 | imbitrid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) -> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) ) |
| 72 | 47 71 | syld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) ) |
| 73 | 72 | 3impia | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) |