This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | monoord.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| monoord.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
||
| monoord.3 | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
||
| Assertion | monoord | |- ( ph -> ( F ` M ) <_ ( F ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoord.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | monoord.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
|
| 3 | monoord.3 | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
|
| 4 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 6 | eleq1 | |- ( x = M -> ( x e. ( M ... N ) <-> M e. ( M ... N ) ) ) |
|
| 7 | fveq2 | |- ( x = M -> ( F ` x ) = ( F ` M ) ) |
|
| 8 | 7 | breq2d | |- ( x = M -> ( ( F ` M ) <_ ( F ` x ) <-> ( F ` M ) <_ ( F ` M ) ) ) |
| 9 | 6 8 | imbi12d | |- ( x = M -> ( ( x e. ( M ... N ) -> ( F ` M ) <_ ( F ` x ) ) <-> ( M e. ( M ... N ) -> ( F ` M ) <_ ( F ` M ) ) ) ) |
| 10 | 9 | imbi2d | |- ( x = M -> ( ( ph -> ( x e. ( M ... N ) -> ( F ` M ) <_ ( F ` x ) ) ) <-> ( ph -> ( M e. ( M ... N ) -> ( F ` M ) <_ ( F ` M ) ) ) ) ) |
| 11 | eleq1 | |- ( x = n -> ( x e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
|
| 12 | fveq2 | |- ( x = n -> ( F ` x ) = ( F ` n ) ) |
|
| 13 | 12 | breq2d | |- ( x = n -> ( ( F ` M ) <_ ( F ` x ) <-> ( F ` M ) <_ ( F ` n ) ) ) |
| 14 | 11 13 | imbi12d | |- ( x = n -> ( ( x e. ( M ... N ) -> ( F ` M ) <_ ( F ` x ) ) <-> ( n e. ( M ... N ) -> ( F ` M ) <_ ( F ` n ) ) ) ) |
| 15 | 14 | imbi2d | |- ( x = n -> ( ( ph -> ( x e. ( M ... N ) -> ( F ` M ) <_ ( F ` x ) ) ) <-> ( ph -> ( n e. ( M ... N ) -> ( F ` M ) <_ ( F ` n ) ) ) ) ) |
| 16 | eleq1 | |- ( x = ( n + 1 ) -> ( x e. ( M ... N ) <-> ( n + 1 ) e. ( M ... N ) ) ) |
|
| 17 | fveq2 | |- ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
|
| 18 | 17 | breq2d | |- ( x = ( n + 1 ) -> ( ( F ` M ) <_ ( F ` x ) <-> ( F ` M ) <_ ( F ` ( n + 1 ) ) ) ) |
| 19 | 16 18 | imbi12d | |- ( x = ( n + 1 ) -> ( ( x e. ( M ... N ) -> ( F ` M ) <_ ( F ` x ) ) <-> ( ( n + 1 ) e. ( M ... N ) -> ( F ` M ) <_ ( F ` ( n + 1 ) ) ) ) ) |
| 20 | 19 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( M ... N ) -> ( F ` M ) <_ ( F ` x ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( F ` M ) <_ ( F ` ( n + 1 ) ) ) ) ) ) |
| 21 | eleq1 | |- ( x = N -> ( x e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
|
| 22 | fveq2 | |- ( x = N -> ( F ` x ) = ( F ` N ) ) |
|
| 23 | 22 | breq2d | |- ( x = N -> ( ( F ` M ) <_ ( F ` x ) <-> ( F ` M ) <_ ( F ` N ) ) ) |
| 24 | 21 23 | imbi12d | |- ( x = N -> ( ( x e. ( M ... N ) -> ( F ` M ) <_ ( F ` x ) ) <-> ( N e. ( M ... N ) -> ( F ` M ) <_ ( F ` N ) ) ) ) |
| 25 | 24 | imbi2d | |- ( x = N -> ( ( ph -> ( x e. ( M ... N ) -> ( F ` M ) <_ ( F ` x ) ) ) <-> ( ph -> ( N e. ( M ... N ) -> ( F ` M ) <_ ( F ` N ) ) ) ) ) |
| 26 | fveq2 | |- ( k = M -> ( F ` k ) = ( F ` M ) ) |
|
| 27 | 26 | eleq1d | |- ( k = M -> ( ( F ` k ) e. RR <-> ( F ` M ) e. RR ) ) |
| 28 | 2 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) ( F ` k ) e. RR ) |
| 29 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 30 | 1 29 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 31 | 27 28 30 | rspcdva | |- ( ph -> ( F ` M ) e. RR ) |
| 32 | 31 | leidd | |- ( ph -> ( F ` M ) <_ ( F ` M ) ) |
| 33 | 32 | a1d | |- ( ph -> ( M e. ( M ... N ) -> ( F ` M ) <_ ( F ` M ) ) ) |
| 34 | peano2fzr | |- ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) |
|
| 35 | 34 | adantl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( M ... N ) ) |
| 36 | 35 | expr | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n + 1 ) e. ( M ... N ) -> n e. ( M ... N ) ) ) |
| 37 | 36 | imim1d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n e. ( M ... N ) -> ( F ` M ) <_ ( F ` n ) ) -> ( ( n + 1 ) e. ( M ... N ) -> ( F ` M ) <_ ( F ` n ) ) ) ) |
| 38 | fveq2 | |- ( k = n -> ( F ` k ) = ( F ` n ) ) |
|
| 39 | fvoveq1 | |- ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) |
|
| 40 | 38 39 | breq12d | |- ( k = n -> ( ( F ` k ) <_ ( F ` ( k + 1 ) ) <-> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) ) |
| 41 | 3 | ralrimiva | |- ( ph -> A. k e. ( M ... ( N - 1 ) ) ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 42 | 41 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. k e. ( M ... ( N - 1 ) ) ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 43 | simprl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
|
| 44 | eluzelz | |- ( n e. ( ZZ>= ` M ) -> n e. ZZ ) |
|
| 45 | 43 44 | syl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ZZ ) |
| 46 | simprr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( M ... N ) ) |
|
| 47 | elfzuz3 | |- ( ( n + 1 ) e. ( M ... N ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
|
| 48 | 46 47 | syl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
| 49 | eluzp1m1 | |- ( ( n e. ZZ /\ N e. ( ZZ>= ` ( n + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` n ) ) |
|
| 50 | 45 48 49 | syl2anc | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( N - 1 ) e. ( ZZ>= ` n ) ) |
| 51 | elfzuzb | |- ( n e. ( M ... ( N - 1 ) ) <-> ( n e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` n ) ) ) |
|
| 52 | 43 50 51 | sylanbrc | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( M ... ( N - 1 ) ) ) |
| 53 | 40 42 52 | rspcdva | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) |
| 54 | 31 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` M ) e. RR ) |
| 55 | 38 | eleq1d | |- ( k = n -> ( ( F ` k ) e. RR <-> ( F ` n ) e. RR ) ) |
| 56 | 28 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. k e. ( M ... N ) ( F ` k ) e. RR ) |
| 57 | 55 56 35 | rspcdva | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` n ) e. RR ) |
| 58 | fveq2 | |- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
|
| 59 | 58 | eleq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) e. RR <-> ( F ` ( n + 1 ) ) e. RR ) ) |
| 60 | 59 56 46 | rspcdva | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) e. RR ) |
| 61 | letr | |- ( ( ( F ` M ) e. RR /\ ( F ` n ) e. RR /\ ( F ` ( n + 1 ) ) e. RR ) -> ( ( ( F ` M ) <_ ( F ` n ) /\ ( F ` n ) <_ ( F ` ( n + 1 ) ) ) -> ( F ` M ) <_ ( F ` ( n + 1 ) ) ) ) |
|
| 62 | 54 57 60 61 | syl3anc | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( ( F ` M ) <_ ( F ` n ) /\ ( F ` n ) <_ ( F ` ( n + 1 ) ) ) -> ( F ` M ) <_ ( F ` ( n + 1 ) ) ) ) |
| 63 | 53 62 | mpan2d | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( F ` M ) <_ ( F ` n ) -> ( F ` M ) <_ ( F ` ( n + 1 ) ) ) ) |
| 64 | 37 63 | animpimp2impd | |- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( n e. ( M ... N ) -> ( F ` M ) <_ ( F ` n ) ) ) -> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( F ` M ) <_ ( F ` ( n + 1 ) ) ) ) ) ) |
| 65 | 10 15 20 25 33 64 | uzind4i | |- ( N e. ( ZZ>= ` M ) -> ( ph -> ( N e. ( M ... N ) -> ( F ` M ) <_ ( F ` N ) ) ) ) |
| 66 | 1 65 | mpcom | |- ( ph -> ( N e. ( M ... N ) -> ( F ` M ) <_ ( F ` N ) ) ) |
| 67 | 5 66 | mpd | |- ( ph -> ( F ` M ) <_ ( F ` N ) ) |