This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| climub.2 | |- ( ph -> N e. Z ) |
||
| climub.3 | |- ( ph -> F ~~> A ) |
||
| climub.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| climub.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
||
| Assertion | climub | |- ( ph -> ( F ` N ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climub.2 | |- ( ph -> N e. Z ) |
|
| 3 | climub.3 | |- ( ph -> F ~~> A ) |
|
| 4 | climub.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 5 | climub.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
|
| 6 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 7 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 8 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 9 | 7 8 | syl | |- ( ph -> N e. ZZ ) |
| 10 | fveq2 | |- ( k = N -> ( F ` k ) = ( F ` N ) ) |
|
| 11 | 10 | eleq1d | |- ( k = N -> ( ( F ` k ) e. RR <-> ( F ` N ) e. RR ) ) |
| 12 | 11 | imbi2d | |- ( k = N -> ( ( ph -> ( F ` k ) e. RR ) <-> ( ph -> ( F ` N ) e. RR ) ) ) |
| 13 | 4 | expcom | |- ( k e. Z -> ( ph -> ( F ` k ) e. RR ) ) |
| 14 | 12 13 | vtoclga | |- ( N e. Z -> ( ph -> ( F ` N ) e. RR ) ) |
| 15 | 2 14 | mpcom | |- ( ph -> ( F ` N ) e. RR ) |
| 16 | 1 | uztrn2 | |- ( ( N e. Z /\ j e. ( ZZ>= ` N ) ) -> j e. Z ) |
| 17 | 2 16 | sylan | |- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> j e. Z ) |
| 18 | fveq2 | |- ( k = j -> ( F ` k ) = ( F ` j ) ) |
|
| 19 | 18 | eleq1d | |- ( k = j -> ( ( F ` k ) e. RR <-> ( F ` j ) e. RR ) ) |
| 20 | 19 | imbi2d | |- ( k = j -> ( ( ph -> ( F ` k ) e. RR ) <-> ( ph -> ( F ` j ) e. RR ) ) ) |
| 21 | 20 13 | vtoclga | |- ( j e. Z -> ( ph -> ( F ` j ) e. RR ) ) |
| 22 | 21 | impcom | |- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
| 23 | 17 22 | syldan | |- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> ( F ` j ) e. RR ) |
| 24 | simpr | |- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> j e. ( ZZ>= ` N ) ) |
|
| 25 | elfzuz | |- ( k e. ( N ... j ) -> k e. ( ZZ>= ` N ) ) |
|
| 26 | 1 | uztrn2 | |- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 27 | 2 26 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 28 | 27 4 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. RR ) |
| 29 | 25 28 | sylan2 | |- ( ( ph /\ k e. ( N ... j ) ) -> ( F ` k ) e. RR ) |
| 30 | 29 | adantlr | |- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( N ... j ) ) -> ( F ` k ) e. RR ) |
| 31 | elfzuz | |- ( k e. ( N ... ( j - 1 ) ) -> k e. ( ZZ>= ` N ) ) |
|
| 32 | 27 5 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 33 | 31 32 | sylan2 | |- ( ( ph /\ k e. ( N ... ( j - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 34 | 33 | adantlr | |- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( N ... ( j - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 35 | 24 30 34 | monoord | |- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> ( F ` N ) <_ ( F ` j ) ) |
| 36 | 6 9 15 3 23 35 | climlec2 | |- ( ph -> ( F ` N ) <_ A ) |