This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl and harmonicbnd . Derive bounds on gamma as F ( 1 ) and G ( 1 ) . (Contributed by Mario Carneiro, 11-Jul-2014) (Revised by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | ||
| emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | ||
| emcl.4 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) | ||
| Assertion | emcllem7 | ⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ∧ 𝐹 : ℕ ⟶ ( γ [,] 1 ) ∧ 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 2 | emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 3 | emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | |
| 4 | emcl.4 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 7 | 1 2 3 4 | emcllem6 | ⊢ ( 𝐹 ⇝ γ ∧ 𝐺 ⇝ γ ) |
| 8 | 7 | simpri | ⊢ 𝐺 ⇝ γ |
| 9 | 8 | a1i | ⊢ ( ⊤ → 𝐺 ⇝ γ ) |
| 10 | 1 2 | emcllem1 | ⊢ ( 𝐹 : ℕ ⟶ ℝ ∧ 𝐺 : ℕ ⟶ ℝ ) |
| 11 | 10 | simpri | ⊢ 𝐺 : ℕ ⟶ ℝ |
| 12 | 11 | ffvelcdmi | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 13 | 12 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 14 | 5 6 9 13 | climrecl | ⊢ ( ⊤ → γ ∈ ℝ ) |
| 15 | 1nn | ⊢ 1 ∈ ℕ | |
| 16 | simpr | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) | |
| 17 | 8 | a1i | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → 𝐺 ⇝ γ ) |
| 18 | 12 | adantl | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 19 | 1 2 | emcllem2 | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
| 20 | 19 | simprd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 22 | 5 16 17 18 21 | climub | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ 𝑖 ) ≤ γ ) |
| 23 | 22 | ralrimiva | ⊢ ( ⊤ → ∀ 𝑖 ∈ ℕ ( 𝐺 ‘ 𝑖 ) ≤ γ ) |
| 24 | fveq2 | ⊢ ( 𝑖 = 1 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 1 ) ) | |
| 25 | oveq2 | ⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) | |
| 26 | 25 | sumeq1d | ⊢ ( 𝑛 = 1 → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... 1 ) ( 1 / 𝑚 ) ) |
| 27 | 1z | ⊢ 1 ∈ ℤ | |
| 28 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 29 | oveq2 | ⊢ ( 𝑚 = 1 → ( 1 / 𝑚 ) = ( 1 / 1 ) ) | |
| 30 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 31 | 29 30 | eqtrdi | ⊢ ( 𝑚 = 1 → ( 1 / 𝑚 ) = 1 ) |
| 32 | 31 | fsum1 | ⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℂ ) → Σ 𝑚 ∈ ( 1 ... 1 ) ( 1 / 𝑚 ) = 1 ) |
| 33 | 27 28 32 | mp2an | ⊢ Σ 𝑚 ∈ ( 1 ... 1 ) ( 1 / 𝑚 ) = 1 |
| 34 | 26 33 | eqtrdi | ⊢ ( 𝑛 = 1 → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = 1 ) |
| 35 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = ( 1 + 1 ) ) | |
| 36 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 37 | 35 36 | eqtr4di | ⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = 2 ) |
| 38 | 37 | fveq2d | ⊢ ( 𝑛 = 1 → ( log ‘ ( 𝑛 + 1 ) ) = ( log ‘ 2 ) ) |
| 39 | 34 38 | oveq12d | ⊢ ( 𝑛 = 1 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( 1 − ( log ‘ 2 ) ) ) |
| 40 | 1re | ⊢ 1 ∈ ℝ | |
| 41 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 42 | relogcl | ⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) | |
| 43 | 41 42 | ax-mp | ⊢ ( log ‘ 2 ) ∈ ℝ |
| 44 | 40 43 | resubcli | ⊢ ( 1 − ( log ‘ 2 ) ) ∈ ℝ |
| 45 | 44 | elexi | ⊢ ( 1 − ( log ‘ 2 ) ) ∈ V |
| 46 | 39 2 45 | fvmpt | ⊢ ( 1 ∈ ℕ → ( 𝐺 ‘ 1 ) = ( 1 − ( log ‘ 2 ) ) ) |
| 47 | 15 46 | ax-mp | ⊢ ( 𝐺 ‘ 1 ) = ( 1 − ( log ‘ 2 ) ) |
| 48 | 24 47 | eqtrdi | ⊢ ( 𝑖 = 1 → ( 𝐺 ‘ 𝑖 ) = ( 1 − ( log ‘ 2 ) ) ) |
| 49 | 48 | breq1d | ⊢ ( 𝑖 = 1 → ( ( 𝐺 ‘ 𝑖 ) ≤ γ ↔ ( 1 − ( log ‘ 2 ) ) ≤ γ ) ) |
| 50 | 49 | rspcva | ⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑖 ∈ ℕ ( 𝐺 ‘ 𝑖 ) ≤ γ ) → ( 1 − ( log ‘ 2 ) ) ≤ γ ) |
| 51 | 15 23 50 | sylancr | ⊢ ( ⊤ → ( 1 − ( log ‘ 2 ) ) ≤ γ ) |
| 52 | fveq2 | ⊢ ( 𝑥 = 𝑖 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 53 | 52 | negeqd | ⊢ ( 𝑥 = 𝑖 → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑖 ) ) |
| 54 | eqid | ⊢ ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) | |
| 55 | negex | ⊢ - ( 𝐹 ‘ 𝑖 ) ∈ V | |
| 56 | 53 54 55 | fvmpt | ⊢ ( 𝑖 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑖 ) = - ( 𝐹 ‘ 𝑖 ) ) |
| 57 | 56 | adantl | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑖 ) = - ( 𝐹 ‘ 𝑖 ) ) |
| 58 | 7 | simpli | ⊢ 𝐹 ⇝ γ |
| 59 | 58 | a1i | ⊢ ( ⊤ → 𝐹 ⇝ γ ) |
| 60 | 0cnd | ⊢ ( ⊤ → 0 ∈ ℂ ) | |
| 61 | nnex | ⊢ ℕ ∈ V | |
| 62 | 61 | mptex | ⊢ ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ∈ V |
| 63 | 62 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ∈ V ) |
| 64 | 10 | simpli | ⊢ 𝐹 : ℕ ⟶ ℝ |
| 65 | 64 | ffvelcdmi | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 66 | 65 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 67 | 66 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 68 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 69 | 68 | negeqd | ⊢ ( 𝑥 = 𝑘 → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 70 | negex | ⊢ - ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 71 | 69 54 70 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 72 | 71 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 73 | df-neg | ⊢ - ( 𝐹 ‘ 𝑘 ) = ( 0 − ( 𝐹 ‘ 𝑘 ) ) | |
| 74 | 72 73 | eqtrdi | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) = ( 0 − ( 𝐹 ‘ 𝑘 ) ) ) |
| 75 | 5 6 59 60 63 67 74 | climsubc2 | ⊢ ( ⊤ → ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ⇝ ( 0 − γ ) ) |
| 76 | 75 | adantr | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ⇝ ( 0 − γ ) ) |
| 77 | 66 | renegcld | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → - ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 78 | 72 77 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 79 | 78 | adantlr | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 80 | 19 | simpld | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 81 | 80 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 82 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 83 | 82 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 84 | 64 | ffvelcdmi | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 85 | 83 84 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 86 | 85 66 | lenegd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ - ( 𝐹 ‘ 𝑘 ) ≤ - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 87 | 81 86 | mpbid | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → - ( 𝐹 ‘ 𝑘 ) ≤ - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 88 | fveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 89 | 88 | negeqd | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → - ( 𝐹 ‘ 𝑥 ) = - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 90 | negex | ⊢ - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ V | |
| 91 | 89 54 90 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ ( 𝑘 + 1 ) ) = - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 92 | 83 91 | syl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ ( 𝑘 + 1 ) ) = - ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 93 | 87 72 92 | 3brtr4d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) ≤ ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 94 | 93 | adantlr | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑘 ) ≤ ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 95 | 5 16 76 79 94 | climub | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ - ( 𝐹 ‘ 𝑥 ) ) ‘ 𝑖 ) ≤ ( 0 − γ ) ) |
| 96 | 57 95 | eqbrtrrd | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → - ( 𝐹 ‘ 𝑖 ) ≤ ( 0 − γ ) ) |
| 97 | df-neg | ⊢ - γ = ( 0 − γ ) | |
| 98 | 96 97 | breqtrrdi | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → - ( 𝐹 ‘ 𝑖 ) ≤ - γ ) |
| 99 | 14 | mptru | ⊢ γ ∈ ℝ |
| 100 | 64 | ffvelcdmi | ⊢ ( 𝑖 ∈ ℕ → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
| 101 | 100 | adantl | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
| 102 | leneg | ⊢ ( ( γ ∈ ℝ ∧ ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) → ( γ ≤ ( 𝐹 ‘ 𝑖 ) ↔ - ( 𝐹 ‘ 𝑖 ) ≤ - γ ) ) | |
| 103 | 99 101 102 | sylancr | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( γ ≤ ( 𝐹 ‘ 𝑖 ) ↔ - ( 𝐹 ‘ 𝑖 ) ≤ - γ ) ) |
| 104 | 98 103 | mpbird | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → γ ≤ ( 𝐹 ‘ 𝑖 ) ) |
| 105 | 104 | ralrimiva | ⊢ ( ⊤ → ∀ 𝑖 ∈ ℕ γ ≤ ( 𝐹 ‘ 𝑖 ) ) |
| 106 | fveq2 | ⊢ ( 𝑖 = 1 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 1 ) ) | |
| 107 | fveq2 | ⊢ ( 𝑛 = 1 → ( log ‘ 𝑛 ) = ( log ‘ 1 ) ) | |
| 108 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
| 109 | 107 108 | eqtrdi | ⊢ ( 𝑛 = 1 → ( log ‘ 𝑛 ) = 0 ) |
| 110 | 34 109 | oveq12d | ⊢ ( 𝑛 = 1 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) = ( 1 − 0 ) ) |
| 111 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 112 | 110 111 | eqtrdi | ⊢ ( 𝑛 = 1 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) = 1 ) |
| 113 | 40 | elexi | ⊢ 1 ∈ V |
| 114 | 112 1 113 | fvmpt | ⊢ ( 1 ∈ ℕ → ( 𝐹 ‘ 1 ) = 1 ) |
| 115 | 15 114 | ax-mp | ⊢ ( 𝐹 ‘ 1 ) = 1 |
| 116 | 106 115 | eqtrdi | ⊢ ( 𝑖 = 1 → ( 𝐹 ‘ 𝑖 ) = 1 ) |
| 117 | 116 | breq2d | ⊢ ( 𝑖 = 1 → ( γ ≤ ( 𝐹 ‘ 𝑖 ) ↔ γ ≤ 1 ) ) |
| 118 | 117 | rspcva | ⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑖 ∈ ℕ γ ≤ ( 𝐹 ‘ 𝑖 ) ) → γ ≤ 1 ) |
| 119 | 15 105 118 | sylancr | ⊢ ( ⊤ → γ ≤ 1 ) |
| 120 | 44 40 | elicc2i | ⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ↔ ( γ ∈ ℝ ∧ ( 1 − ( log ‘ 2 ) ) ≤ γ ∧ γ ≤ 1 ) ) |
| 121 | 14 51 119 120 | syl3anbrc | ⊢ ( ⊤ → γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ) |
| 122 | ffn | ⊢ ( 𝐹 : ℕ ⟶ ℝ → 𝐹 Fn ℕ ) | |
| 123 | 64 122 | mp1i | ⊢ ( ⊤ → 𝐹 Fn ℕ ) |
| 124 | 16 5 | eleqtrdi | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
| 125 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑖 ) → 𝑘 ∈ ℕ ) | |
| 126 | 125 | adantl | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑖 ) ) → 𝑘 ∈ ℕ ) |
| 127 | 126 65 | syl | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 128 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( 𝑖 − 1 ) ) → 𝑘 ∈ ℕ ) | |
| 129 | 128 | adantl | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑖 − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 130 | 129 80 | syl | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑖 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 131 | 124 127 130 | monoord2 | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐹 ‘ 1 ) ) |
| 132 | 131 115 | breqtrdi | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ≤ 1 ) |
| 133 | 99 40 | elicc2i | ⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ ( γ [,] 1 ) ↔ ( ( 𝐹 ‘ 𝑖 ) ∈ ℝ ∧ γ ≤ ( 𝐹 ‘ 𝑖 ) ∧ ( 𝐹 ‘ 𝑖 ) ≤ 1 ) ) |
| 134 | 101 104 132 133 | syl3anbrc | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ∈ ( γ [,] 1 ) ) |
| 135 | 134 | ralrimiva | ⊢ ( ⊤ → ∀ 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ∈ ( γ [,] 1 ) ) |
| 136 | ffnfv | ⊢ ( 𝐹 : ℕ ⟶ ( γ [,] 1 ) ↔ ( 𝐹 Fn ℕ ∧ ∀ 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ∈ ( γ [,] 1 ) ) ) | |
| 137 | 123 135 136 | sylanbrc | ⊢ ( ⊤ → 𝐹 : ℕ ⟶ ( γ [,] 1 ) ) |
| 138 | ffn | ⊢ ( 𝐺 : ℕ ⟶ ℝ → 𝐺 Fn ℕ ) | |
| 139 | 11 138 | mp1i | ⊢ ( ⊤ → 𝐺 Fn ℕ ) |
| 140 | 11 | ffvelcdmi | ⊢ ( 𝑖 ∈ ℕ → ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 141 | 140 | adantl | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ 𝑖 ) ∈ ℝ ) |
| 142 | 126 12 | syl | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑖 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 143 | 129 20 | syl | ⊢ ( ( ( ⊤ ∧ 𝑖 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑖 − 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 144 | 124 142 143 | monoord | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ 𝑖 ) ) |
| 145 | 47 144 | eqbrtrrid | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 1 − ( log ‘ 2 ) ) ≤ ( 𝐺 ‘ 𝑖 ) ) |
| 146 | 44 99 | elicc2i | ⊢ ( ( 𝐺 ‘ 𝑖 ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ↔ ( ( 𝐺 ‘ 𝑖 ) ∈ ℝ ∧ ( 1 − ( log ‘ 2 ) ) ≤ ( 𝐺 ‘ 𝑖 ) ∧ ( 𝐺 ‘ 𝑖 ) ≤ γ ) ) |
| 147 | 141 145 22 146 | syl3anbrc | ⊢ ( ( ⊤ ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ 𝑖 ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 148 | 147 | ralrimiva | ⊢ ( ⊤ → ∀ 𝑖 ∈ ℕ ( 𝐺 ‘ 𝑖 ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 149 | ffnfv | ⊢ ( 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ↔ ( 𝐺 Fn ℕ ∧ ∀ 𝑖 ∈ ℕ ( 𝐺 ‘ 𝑖 ) ∈ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) ) | |
| 150 | 139 148 149 | sylanbrc | ⊢ ( ⊤ → 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 151 | 121 137 150 | 3jca | ⊢ ( ⊤ → ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ∧ 𝐹 : ℕ ⟶ ( γ [,] 1 ) ∧ 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) ) |
| 152 | 151 | mptru | ⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ∧ 𝐹 : ℕ ⟶ ( γ [,] 1 ) ∧ 𝐺 : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |