This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sin01bnd and cos01bnd . (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ef01bnd.1 | |- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | ef01bndlem | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) < ( ( A ^ 4 ) / 6 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef01bnd.1 | |- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | 0xr | |- 0 e. RR* |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | elioc2 | |- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
|
| 6 | 3 4 5 | mp2an | |- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
| 7 | 6 | simp1bi | |- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
| 8 | 7 | recnd | |- ( A e. ( 0 (,] 1 ) -> A e. CC ) |
| 9 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 10 | 2 8 9 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) |
| 11 | 4nn0 | |- 4 e. NN0 |
|
| 12 | 1 | eftlcl | |- ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) |
| 13 | 10 11 12 | sylancl | |- ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) |
| 14 | 13 | abscld | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) e. RR ) |
| 15 | reexpcl | |- ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) |
|
| 16 | 7 11 15 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) |
| 17 | 4re | |- 4 e. RR |
|
| 18 | 17 4 | readdcli | |- ( 4 + 1 ) e. RR |
| 19 | faccl | |- ( 4 e. NN0 -> ( ! ` 4 ) e. NN ) |
|
| 20 | 11 19 | ax-mp | |- ( ! ` 4 ) e. NN |
| 21 | 4nn | |- 4 e. NN |
|
| 22 | 20 21 | nnmulcli | |- ( ( ! ` 4 ) x. 4 ) e. NN |
| 23 | nndivre | |- ( ( ( 4 + 1 ) e. RR /\ ( ( ! ` 4 ) x. 4 ) e. NN ) -> ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR ) |
|
| 24 | 18 22 23 | mp2an | |- ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR |
| 25 | remulcl | |- ( ( ( A ^ 4 ) e. RR /\ ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) e. RR ) |
|
| 26 | 16 24 25 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) e. RR ) |
| 27 | 6nn | |- 6 e. NN |
|
| 28 | nndivre | |- ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
|
| 29 | 16 27 28 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
| 30 | eqid | |- ( n e. NN0 |-> ( ( ( abs ` ( _i x. A ) ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` ( _i x. A ) ) ^ n ) / ( ! ` n ) ) ) |
|
| 31 | eqid | |- ( n e. NN0 |-> ( ( ( ( abs ` ( _i x. A ) ) ^ 4 ) / ( ! ` 4 ) ) x. ( ( 1 / ( 4 + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` ( _i x. A ) ) ^ 4 ) / ( ! ` 4 ) ) x. ( ( 1 / ( 4 + 1 ) ) ^ n ) ) ) |
|
| 32 | 21 | a1i | |- ( A e. ( 0 (,] 1 ) -> 4 e. NN ) |
| 33 | absmul | |- ( ( _i e. CC /\ A e. CC ) -> ( abs ` ( _i x. A ) ) = ( ( abs ` _i ) x. ( abs ` A ) ) ) |
|
| 34 | 2 8 33 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) = ( ( abs ` _i ) x. ( abs ` A ) ) ) |
| 35 | absi | |- ( abs ` _i ) = 1 |
|
| 36 | 35 | oveq1i | |- ( ( abs ` _i ) x. ( abs ` A ) ) = ( 1 x. ( abs ` A ) ) |
| 37 | 6 | simp2bi | |- ( A e. ( 0 (,] 1 ) -> 0 < A ) |
| 38 | 7 37 | elrpd | |- ( A e. ( 0 (,] 1 ) -> A e. RR+ ) |
| 39 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 40 | rpge0 | |- ( A e. RR+ -> 0 <_ A ) |
|
| 41 | 39 40 | absidd | |- ( A e. RR+ -> ( abs ` A ) = A ) |
| 42 | 38 41 | syl | |- ( A e. ( 0 (,] 1 ) -> ( abs ` A ) = A ) |
| 43 | 42 | oveq2d | |- ( A e. ( 0 (,] 1 ) -> ( 1 x. ( abs ` A ) ) = ( 1 x. A ) ) |
| 44 | 36 43 | eqtrid | |- ( A e. ( 0 (,] 1 ) -> ( ( abs ` _i ) x. ( abs ` A ) ) = ( 1 x. A ) ) |
| 45 | 8 | mullidd | |- ( A e. ( 0 (,] 1 ) -> ( 1 x. A ) = A ) |
| 46 | 34 44 45 | 3eqtrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) = A ) |
| 47 | 6 | simp3bi | |- ( A e. ( 0 (,] 1 ) -> A <_ 1 ) |
| 48 | 46 47 | eqbrtrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) <_ 1 ) |
| 49 | 1 30 31 32 10 48 | eftlub | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) <_ ( ( ( abs ` ( _i x. A ) ) ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) |
| 50 | 46 | oveq1d | |- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( _i x. A ) ) ^ 4 ) = ( A ^ 4 ) ) |
| 51 | 50 | oveq1d | |- ( A e. ( 0 (,] 1 ) -> ( ( ( abs ` ( _i x. A ) ) ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) = ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) |
| 52 | 49 51 | breqtrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) <_ ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) |
| 53 | 3pos | |- 0 < 3 |
|
| 54 | 0re | |- 0 e. RR |
|
| 55 | 3re | |- 3 e. RR |
|
| 56 | 5re | |- 5 e. RR |
|
| 57 | 54 55 56 | ltadd1i | |- ( 0 < 3 <-> ( 0 + 5 ) < ( 3 + 5 ) ) |
| 58 | 53 57 | mpbi | |- ( 0 + 5 ) < ( 3 + 5 ) |
| 59 | 5cn | |- 5 e. CC |
|
| 60 | 59 | addlidi | |- ( 0 + 5 ) = 5 |
| 61 | cu2 | |- ( 2 ^ 3 ) = 8 |
|
| 62 | 5p3e8 | |- ( 5 + 3 ) = 8 |
|
| 63 | 3cn | |- 3 e. CC |
|
| 64 | 59 63 | addcomi | |- ( 5 + 3 ) = ( 3 + 5 ) |
| 65 | 61 62 64 | 3eqtr2ri | |- ( 3 + 5 ) = ( 2 ^ 3 ) |
| 66 | 58 60 65 | 3brtr3i | |- 5 < ( 2 ^ 3 ) |
| 67 | 2re | |- 2 e. RR |
|
| 68 | 1le2 | |- 1 <_ 2 |
|
| 69 | 4z | |- 4 e. ZZ |
|
| 70 | 3lt4 | |- 3 < 4 |
|
| 71 | 55 17 70 | ltleii | |- 3 <_ 4 |
| 72 | 3z | |- 3 e. ZZ |
|
| 73 | 72 | eluz1i | |- ( 4 e. ( ZZ>= ` 3 ) <-> ( 4 e. ZZ /\ 3 <_ 4 ) ) |
| 74 | 69 71 73 | mpbir2an | |- 4 e. ( ZZ>= ` 3 ) |
| 75 | leexp2a | |- ( ( 2 e. RR /\ 1 <_ 2 /\ 4 e. ( ZZ>= ` 3 ) ) -> ( 2 ^ 3 ) <_ ( 2 ^ 4 ) ) |
|
| 76 | 67 68 74 75 | mp3an | |- ( 2 ^ 3 ) <_ ( 2 ^ 4 ) |
| 77 | 8re | |- 8 e. RR |
|
| 78 | 61 77 | eqeltri | |- ( 2 ^ 3 ) e. RR |
| 79 | 2nn | |- 2 e. NN |
|
| 80 | nnexpcl | |- ( ( 2 e. NN /\ 4 e. NN0 ) -> ( 2 ^ 4 ) e. NN ) |
|
| 81 | 79 11 80 | mp2an | |- ( 2 ^ 4 ) e. NN |
| 82 | 81 | nnrei | |- ( 2 ^ 4 ) e. RR |
| 83 | 56 78 82 | ltletri | |- ( ( 5 < ( 2 ^ 3 ) /\ ( 2 ^ 3 ) <_ ( 2 ^ 4 ) ) -> 5 < ( 2 ^ 4 ) ) |
| 84 | 66 76 83 | mp2an | |- 5 < ( 2 ^ 4 ) |
| 85 | 6re | |- 6 e. RR |
|
| 86 | 85 82 | remulcli | |- ( 6 x. ( 2 ^ 4 ) ) e. RR |
| 87 | 6pos | |- 0 < 6 |
|
| 88 | 81 | nngt0i | |- 0 < ( 2 ^ 4 ) |
| 89 | 85 82 87 88 | mulgt0ii | |- 0 < ( 6 x. ( 2 ^ 4 ) ) |
| 90 | 56 82 86 89 | ltdiv1ii | |- ( 5 < ( 2 ^ 4 ) <-> ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) < ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) ) |
| 91 | 84 90 | mpbi | |- ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) < ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) |
| 92 | df-5 | |- 5 = ( 4 + 1 ) |
|
| 93 | df-4 | |- 4 = ( 3 + 1 ) |
|
| 94 | 93 | fveq2i | |- ( ! ` 4 ) = ( ! ` ( 3 + 1 ) ) |
| 95 | 3nn0 | |- 3 e. NN0 |
|
| 96 | facp1 | |- ( 3 e. NN0 -> ( ! ` ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 3 + 1 ) ) ) |
|
| 97 | 95 96 | ax-mp | |- ( ! ` ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 3 + 1 ) ) |
| 98 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 99 | 98 93 | eqtr2i | |- ( 3 + 1 ) = ( 2 ^ 2 ) |
| 100 | 99 | oveq2i | |- ( ( ! ` 3 ) x. ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) |
| 101 | 94 97 100 | 3eqtri | |- ( ! ` 4 ) = ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) |
| 102 | 101 | oveq1i | |- ( ( ! ` 4 ) x. ( 2 ^ 2 ) ) = ( ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) x. ( 2 ^ 2 ) ) |
| 103 | 98 | oveq2i | |- ( ( ! ` 4 ) x. ( 2 ^ 2 ) ) = ( ( ! ` 4 ) x. 4 ) |
| 104 | fac3 | |- ( ! ` 3 ) = 6 |
|
| 105 | 6cn | |- 6 e. CC |
|
| 106 | 104 105 | eqeltri | |- ( ! ` 3 ) e. CC |
| 107 | 17 | recni | |- 4 e. CC |
| 108 | 98 107 | eqeltri | |- ( 2 ^ 2 ) e. CC |
| 109 | 106 108 108 | mulassi | |- ( ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) x. ( 2 ^ 2 ) ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) |
| 110 | 102 103 109 | 3eqtr3i | |- ( ( ! ` 4 ) x. 4 ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) |
| 111 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
| 112 | 111 | oveq2i | |- ( 2 ^ ( 2 + 2 ) ) = ( 2 ^ 4 ) |
| 113 | 2cn | |- 2 e. CC |
|
| 114 | 2nn0 | |- 2 e. NN0 |
|
| 115 | expadd | |- ( ( 2 e. CC /\ 2 e. NN0 /\ 2 e. NN0 ) -> ( 2 ^ ( 2 + 2 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) |
|
| 116 | 113 114 114 115 | mp3an | |- ( 2 ^ ( 2 + 2 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) |
| 117 | 112 116 | eqtr3i | |- ( 2 ^ 4 ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) |
| 118 | 117 | oveq2i | |- ( ( ! ` 3 ) x. ( 2 ^ 4 ) ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) |
| 119 | 104 | oveq1i | |- ( ( ! ` 3 ) x. ( 2 ^ 4 ) ) = ( 6 x. ( 2 ^ 4 ) ) |
| 120 | 110 118 119 | 3eqtr2ri | |- ( 6 x. ( 2 ^ 4 ) ) = ( ( ! ` 4 ) x. 4 ) |
| 121 | 92 120 | oveq12i | |- ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) = ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) |
| 122 | 81 | nncni | |- ( 2 ^ 4 ) e. CC |
| 123 | 122 | mullidi | |- ( 1 x. ( 2 ^ 4 ) ) = ( 2 ^ 4 ) |
| 124 | 123 | oveq1i | |- ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) |
| 125 | 81 | nnne0i | |- ( 2 ^ 4 ) =/= 0 |
| 126 | 122 125 | dividi | |- ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) = 1 |
| 127 | 126 | oveq2i | |- ( ( 1 / 6 ) x. ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) ) = ( ( 1 / 6 ) x. 1 ) |
| 128 | ax-1cn | |- 1 e. CC |
|
| 129 | 85 87 | gt0ne0ii | |- 6 =/= 0 |
| 130 | 128 105 122 122 129 125 | divmuldivi | |- ( ( 1 / 6 ) x. ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) ) = ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) |
| 131 | 85 129 | rereccli | |- ( 1 / 6 ) e. RR |
| 132 | 131 | recni | |- ( 1 / 6 ) e. CC |
| 133 | 132 | mulridi | |- ( ( 1 / 6 ) x. 1 ) = ( 1 / 6 ) |
| 134 | 127 130 133 | 3eqtr3i | |- ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( 1 / 6 ) |
| 135 | 124 134 | eqtr3i | |- ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( 1 / 6 ) |
| 136 | 91 121 135 | 3brtr3i | |- ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) |
| 137 | rpexpcl | |- ( ( A e. RR+ /\ 4 e. ZZ ) -> ( A ^ 4 ) e. RR+ ) |
|
| 138 | 38 69 137 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR+ ) |
| 139 | elrp | |- ( ( A ^ 4 ) e. RR+ <-> ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) ) |
|
| 140 | ltmul2 | |- ( ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR /\ ( 1 / 6 ) e. RR /\ ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) |
|
| 141 | 24 131 140 | mp3an12 | |- ( ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) |
| 142 | 139 141 | sylbi | |- ( ( A ^ 4 ) e. RR+ -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) |
| 143 | 138 142 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) |
| 144 | 136 143 | mpbii | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) |
| 145 | 16 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. CC ) |
| 146 | divrec | |- ( ( ( A ^ 4 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) |
|
| 147 | 105 129 146 | mp3an23 | |- ( ( A ^ 4 ) e. CC -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) |
| 148 | 145 147 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) |
| 149 | 144 148 | breqtrrd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) / 6 ) ) |
| 150 | 14 26 29 52 149 | lelttrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) < ( ( A ^ 4 ) / 6 ) ) |