This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by NM, 30-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expadd | |- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( j = 0 -> ( M + j ) = ( M + 0 ) ) |
|
| 2 | 1 | oveq2d | |- ( j = 0 -> ( A ^ ( M + j ) ) = ( A ^ ( M + 0 ) ) ) |
| 3 | oveq2 | |- ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) |
|
| 4 | 3 | oveq2d | |- ( j = 0 -> ( ( A ^ M ) x. ( A ^ j ) ) = ( ( A ^ M ) x. ( A ^ 0 ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( j = 0 -> ( ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) <-> ( A ^ ( M + 0 ) ) = ( ( A ^ M ) x. ( A ^ 0 ) ) ) ) |
| 6 | 5 | imbi2d | |- ( j = 0 -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 0 ) ) = ( ( A ^ M ) x. ( A ^ 0 ) ) ) ) ) |
| 7 | oveq2 | |- ( j = k -> ( M + j ) = ( M + k ) ) |
|
| 8 | 7 | oveq2d | |- ( j = k -> ( A ^ ( M + j ) ) = ( A ^ ( M + k ) ) ) |
| 9 | oveq2 | |- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
|
| 10 | 9 | oveq2d | |- ( j = k -> ( ( A ^ M ) x. ( A ^ j ) ) = ( ( A ^ M ) x. ( A ^ k ) ) ) |
| 11 | 8 10 | eqeq12d | |- ( j = k -> ( ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) <-> ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) ) ) |
| 12 | 11 | imbi2d | |- ( j = k -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) ) ) ) |
| 13 | oveq2 | |- ( j = ( k + 1 ) -> ( M + j ) = ( M + ( k + 1 ) ) ) |
|
| 14 | 13 | oveq2d | |- ( j = ( k + 1 ) -> ( A ^ ( M + j ) ) = ( A ^ ( M + ( k + 1 ) ) ) ) |
| 15 | oveq2 | |- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
|
| 16 | 15 | oveq2d | |- ( j = ( k + 1 ) -> ( ( A ^ M ) x. ( A ^ j ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) |
| 17 | 14 16 | eqeq12d | |- ( j = ( k + 1 ) -> ( ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) <-> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) |
| 18 | 17 | imbi2d | |- ( j = ( k + 1 ) -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) ) |
| 19 | oveq2 | |- ( j = N -> ( M + j ) = ( M + N ) ) |
|
| 20 | 19 | oveq2d | |- ( j = N -> ( A ^ ( M + j ) ) = ( A ^ ( M + N ) ) ) |
| 21 | oveq2 | |- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
|
| 22 | 21 | oveq2d | |- ( j = N -> ( ( A ^ M ) x. ( A ^ j ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| 23 | 20 22 | eqeq12d | |- ( j = N -> ( ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) <-> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 24 | 23 | imbi2d | |- ( j = N -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) ) |
| 25 | nn0cn | |- ( M e. NN0 -> M e. CC ) |
|
| 26 | 25 | addridd | |- ( M e. NN0 -> ( M + 0 ) = M ) |
| 27 | 26 | adantl | |- ( ( A e. CC /\ M e. NN0 ) -> ( M + 0 ) = M ) |
| 28 | 27 | oveq2d | |- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 0 ) ) = ( A ^ M ) ) |
| 29 | expcl | |- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
|
| 30 | 29 | mulridd | |- ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ M ) x. 1 ) = ( A ^ M ) ) |
| 31 | 28 30 | eqtr4d | |- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 0 ) ) = ( ( A ^ M ) x. 1 ) ) |
| 32 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 33 | 32 | adantr | |- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ 0 ) = 1 ) |
| 34 | 33 | oveq2d | |- ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ M ) x. ( A ^ 0 ) ) = ( ( A ^ M ) x. 1 ) ) |
| 35 | 31 34 | eqtr4d | |- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 0 ) ) = ( ( A ^ M ) x. ( A ^ 0 ) ) ) |
| 36 | oveq1 | |- ( ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) -> ( ( A ^ ( M + k ) ) x. A ) = ( ( ( A ^ M ) x. ( A ^ k ) ) x. A ) ) |
|
| 37 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 38 | ax-1cn | |- 1 e. CC |
|
| 39 | addass | |- ( ( M e. CC /\ k e. CC /\ 1 e. CC ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
|
| 40 | 38 39 | mp3an3 | |- ( ( M e. CC /\ k e. CC ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
| 41 | 25 37 40 | syl2an | |- ( ( M e. NN0 /\ k e. NN0 ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
| 42 | 41 | adantll | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
| 43 | 42 | oveq2d | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( ( M + k ) + 1 ) ) = ( A ^ ( M + ( k + 1 ) ) ) ) |
| 44 | simpll | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> A e. CC ) |
|
| 45 | nn0addcl | |- ( ( M e. NN0 /\ k e. NN0 ) -> ( M + k ) e. NN0 ) |
|
| 46 | 45 | adantll | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( M + k ) e. NN0 ) |
| 47 | expp1 | |- ( ( A e. CC /\ ( M + k ) e. NN0 ) -> ( A ^ ( ( M + k ) + 1 ) ) = ( ( A ^ ( M + k ) ) x. A ) ) |
|
| 48 | 44 46 47 | syl2anc | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( ( M + k ) + 1 ) ) = ( ( A ^ ( M + k ) ) x. A ) ) |
| 49 | 43 48 | eqtr3d | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ ( M + k ) ) x. A ) ) |
| 50 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 51 | 50 | adantlr | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 52 | 51 | oveq2d | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) = ( ( A ^ M ) x. ( ( A ^ k ) x. A ) ) ) |
| 53 | 29 | adantr | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ M ) e. CC ) |
| 54 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 55 | 54 | adantlr | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 56 | 53 55 44 | mulassd | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( ( A ^ M ) x. ( A ^ k ) ) x. A ) = ( ( A ^ M ) x. ( ( A ^ k ) x. A ) ) ) |
| 57 | 52 56 | eqtr4d | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) = ( ( ( A ^ M ) x. ( A ^ k ) ) x. A ) ) |
| 58 | 49 57 | eqeq12d | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) <-> ( ( A ^ ( M + k ) ) x. A ) = ( ( ( A ^ M ) x. ( A ^ k ) ) x. A ) ) ) |
| 59 | 36 58 | imbitrrid | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) |
| 60 | 59 | expcom | |- ( k e. NN0 -> ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) ) |
| 61 | 60 | a2d | |- ( k e. NN0 -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) ) -> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) ) |
| 62 | 6 12 18 24 35 61 | nn0ind | |- ( N e. NN0 -> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 63 | 62 | expdcom | |- ( A e. CC -> ( M e. NN0 -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) ) |
| 64 | 63 | 3imp | |- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |