This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between division and reciprocal. Theorem I.9 of Apostol p. 18. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divrec | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
|
| 2 | simp1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
|
| 3 | reccl | |- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
|
| 4 | 3 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
| 5 | 1 2 4 | mul12d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A x. ( 1 / B ) ) ) = ( A x. ( B x. ( 1 / B ) ) ) ) |
| 6 | recid | |- ( ( B e. CC /\ B =/= 0 ) -> ( B x. ( 1 / B ) ) = 1 ) |
|
| 7 | 6 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( 1 / B ) ) = 1 ) |
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. ( B x. ( 1 / B ) ) ) = ( A x. 1 ) ) |
| 9 | 2 | mulridd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. 1 ) = A ) |
| 10 | 5 8 9 | 3eqtrd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A x. ( 1 / B ) ) ) = A ) |
| 11 | 2 4 | mulcld | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. ( 1 / B ) ) e. CC ) |
| 12 | 3simpc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
|
| 13 | divmul | |- ( ( A e. CC /\ ( A x. ( 1 / B ) ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = ( A x. ( 1 / B ) ) <-> ( B x. ( A x. ( 1 / B ) ) ) = A ) ) |
|
| 14 | 2 11 12 13 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = ( A x. ( 1 / B ) ) <-> ( B x. ( A x. ( 1 / B ) ) ) = A ) ) |
| 15 | 10 14 | mpbird | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |