This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 13-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmul2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( C x. A ) < ( C x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A x. C ) < ( B x. C ) ) ) |
|
| 2 | recn | |- ( C e. RR -> C e. CC ) |
|
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | mulcom | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
|
| 5 | 3 4 | sylan | |- ( ( A e. RR /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
| 6 | 5 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
| 7 | recn | |- ( B e. RR -> B e. CC ) |
|
| 8 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 9 | 7 8 | sylan | |- ( ( B e. RR /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 10 | 9 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 11 | 6 10 | breq12d | |- ( ( A e. RR /\ B e. RR /\ C e. CC ) -> ( ( A x. C ) < ( B x. C ) <-> ( C x. A ) < ( C x. B ) ) ) |
| 12 | 2 11 | syl3an3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. C ) < ( B x. C ) <-> ( C x. A ) < ( C x. B ) ) ) |
| 13 | 12 | 3adant3r | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < ( B x. C ) <-> ( C x. A ) < ( C x. B ) ) ) |
| 14 | 1 13 | bitrd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( C x. A ) < ( C x. B ) ) ) |