This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin01bnd | |- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | elioc2 | |- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
| 5 | 4 | simp1bi | |- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
| 6 | 3nn0 | |- 3 e. NN0 |
|
| 7 | reexpcl | |- ( ( A e. RR /\ 3 e. NN0 ) -> ( A ^ 3 ) e. RR ) |
|
| 8 | 5 6 7 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. RR ) |
| 9 | 6nn | |- 6 e. NN |
|
| 10 | nndivre | |- ( ( ( A ^ 3 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 3 ) / 6 ) e. RR ) |
|
| 11 | 8 9 10 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) e. RR ) |
| 12 | 5 11 | resubcld | |- ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 6 ) ) e. RR ) |
| 13 | 12 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 6 ) ) e. CC ) |
| 14 | ax-icn | |- _i e. CC |
|
| 15 | 5 | recnd | |- ( A e. ( 0 (,] 1 ) -> A e. CC ) |
| 16 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 17 | 14 15 16 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) |
| 18 | 4nn0 | |- 4 e. NN0 |
|
| 19 | eqid | |- ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
|
| 20 | 19 | eftlcl | |- ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 21 | 17 18 20 | sylancl | |- ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 22 | 21 | imcld | |- ( A e. ( 0 (,] 1 ) -> ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) |
| 23 | 22 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. CC ) |
| 24 | 19 | resin4p | |- ( A e. RR -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 25 | 5 24 | syl | |- ( A e. ( 0 (,] 1 ) -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 26 | 13 23 25 | mvrladdd | |- ( A e. ( 0 (,] 1 ) -> ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) = ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 27 | 26 | fveq2d | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) = ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 28 | 23 | abscld | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) e. RR ) |
| 29 | 21 | abscld | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) |
| 30 | absimle | |- ( sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
|
| 31 | 21 30 | syl | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 32 | reexpcl | |- ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) |
|
| 33 | 5 18 32 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) |
| 34 | nndivre | |- ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
|
| 35 | 33 9 34 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
| 36 | 19 | ef01bndlem | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 4 ) / 6 ) ) |
| 37 | 6 | a1i | |- ( A e. ( 0 (,] 1 ) -> 3 e. NN0 ) |
| 38 | 4z | |- 4 e. ZZ |
|
| 39 | 3re | |- 3 e. RR |
|
| 40 | 4re | |- 4 e. RR |
|
| 41 | 3lt4 | |- 3 < 4 |
|
| 42 | 39 40 41 | ltleii | |- 3 <_ 4 |
| 43 | 3z | |- 3 e. ZZ |
|
| 44 | 43 | eluz1i | |- ( 4 e. ( ZZ>= ` 3 ) <-> ( 4 e. ZZ /\ 3 <_ 4 ) ) |
| 45 | 38 42 44 | mpbir2an | |- 4 e. ( ZZ>= ` 3 ) |
| 46 | 45 | a1i | |- ( A e. ( 0 (,] 1 ) -> 4 e. ( ZZ>= ` 3 ) ) |
| 47 | 4 | simp2bi | |- ( A e. ( 0 (,] 1 ) -> 0 < A ) |
| 48 | 0re | |- 0 e. RR |
|
| 49 | ltle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
|
| 50 | 48 5 49 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( 0 < A -> 0 <_ A ) ) |
| 51 | 47 50 | mpd | |- ( A e. ( 0 (,] 1 ) -> 0 <_ A ) |
| 52 | 4 | simp3bi | |- ( A e. ( 0 (,] 1 ) -> A <_ 1 ) |
| 53 | 5 37 46 51 52 | leexp2rd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) <_ ( A ^ 3 ) ) |
| 54 | 6re | |- 6 e. RR |
|
| 55 | 54 | a1i | |- ( A e. ( 0 (,] 1 ) -> 6 e. RR ) |
| 56 | 6pos | |- 0 < 6 |
|
| 57 | 56 | a1i | |- ( A e. ( 0 (,] 1 ) -> 0 < 6 ) |
| 58 | lediv1 | |- ( ( ( A ^ 4 ) e. RR /\ ( A ^ 3 ) e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( A ^ 4 ) <_ ( A ^ 3 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) ) |
|
| 59 | 33 8 55 57 58 | syl112anc | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) <_ ( A ^ 3 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) ) |
| 60 | 53 59 | mpbid | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) |
| 61 | 29 35 11 36 60 | ltletrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 3 ) / 6 ) ) |
| 62 | 28 29 11 31 61 | lelttrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) < ( ( A ^ 3 ) / 6 ) ) |
| 63 | 27 62 | eqbrtrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) ) |
| 64 | 5 | resincld | |- ( A e. ( 0 (,] 1 ) -> ( sin ` A ) e. RR ) |
| 65 | 64 12 11 | absdifltd | |- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) <-> ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) /\ ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) ) ) ) |
| 66 | 11 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) e. CC ) |
| 67 | 15 66 66 | subsub4d | |- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) ) ) |
| 68 | 8 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. CC ) |
| 69 | 3cn | |- 3 e. CC |
|
| 70 | 3ne0 | |- 3 =/= 0 |
|
| 71 | 69 70 | pm3.2i | |- ( 3 e. CC /\ 3 =/= 0 ) |
| 72 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 73 | divdiv1 | |- ( ( ( A ^ 3 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) |
|
| 74 | 71 72 73 | mp3an23 | |- ( ( A ^ 3 ) e. CC -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) |
| 75 | 68 74 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) |
| 76 | 3t2e6 | |- ( 3 x. 2 ) = 6 |
|
| 77 | 76 | oveq2i | |- ( ( A ^ 3 ) / ( 3 x. 2 ) ) = ( ( A ^ 3 ) / 6 ) |
| 78 | 75 77 | eqtr2di | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) = ( ( ( A ^ 3 ) / 3 ) / 2 ) ) |
| 79 | 78 78 | oveq12d | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) = ( ( ( ( A ^ 3 ) / 3 ) / 2 ) + ( ( ( A ^ 3 ) / 3 ) / 2 ) ) ) |
| 80 | 3nn | |- 3 e. NN |
|
| 81 | nndivre | |- ( ( ( A ^ 3 ) e. RR /\ 3 e. NN ) -> ( ( A ^ 3 ) / 3 ) e. RR ) |
|
| 82 | 8 80 81 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) e. RR ) |
| 83 | 82 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) e. CC ) |
| 84 | 83 | 2halvesd | |- ( A e. ( 0 (,] 1 ) -> ( ( ( ( A ^ 3 ) / 3 ) / 2 ) + ( ( ( A ^ 3 ) / 3 ) / 2 ) ) = ( ( A ^ 3 ) / 3 ) ) |
| 85 | 79 84 | eqtrd | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) = ( ( A ^ 3 ) / 3 ) ) |
| 86 | 85 | oveq2d | |- ( A e. ( 0 (,] 1 ) -> ( A - ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) ) = ( A - ( ( A ^ 3 ) / 3 ) ) ) |
| 87 | 67 86 | eqtrd | |- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 3 ) ) ) |
| 88 | 87 | breq1d | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) <-> ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) ) |
| 89 | 15 66 | npcand | |- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) = A ) |
| 90 | 89 | breq2d | |- ( A e. ( 0 (,] 1 ) -> ( ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) <-> ( sin ` A ) < A ) ) |
| 91 | 88 90 | anbi12d | |- ( A e. ( 0 (,] 1 ) -> ( ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) /\ ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) ) <-> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) ) |
| 92 | 65 91 | bitrd | |- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) <-> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) ) |
| 93 | 63 92 | mpbid | |- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) |