This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007) (Revised by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioc2 | |- ( ( A e. RR* /\ B e. RR ) -> ( C e. ( A (,] B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 2 | elioc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. RR* /\ B e. RR ) -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) ) |
| 4 | mnfxr | |- -oo e. RR* |
|
| 5 | 4 | a1i | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> -oo e. RR* ) |
| 6 | simpll | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> A e. RR* ) |
|
| 7 | simpr1 | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> C e. RR* ) |
|
| 8 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 9 | 8 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> -oo <_ A ) |
| 10 | simpr2 | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> A < C ) |
|
| 11 | 5 6 7 9 10 | xrlelttrd | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> -oo < C ) |
| 12 | 1 | ad2antlr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> B e. RR* ) |
| 13 | pnfxr | |- +oo e. RR* |
|
| 14 | 13 | a1i | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> +oo e. RR* ) |
| 15 | simpr3 | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> C <_ B ) |
|
| 16 | ltpnf | |- ( B e. RR -> B < +oo ) |
|
| 17 | 16 | ad2antlr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> B < +oo ) |
| 18 | 7 12 14 15 17 | xrlelttrd | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> C < +oo ) |
| 19 | xrrebnd | |- ( C e. RR* -> ( C e. RR <-> ( -oo < C /\ C < +oo ) ) ) |
|
| 20 | 7 19 | syl | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> ( C e. RR <-> ( -oo < C /\ C < +oo ) ) ) |
| 21 | 11 18 20 | mpbir2and | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> C e. RR ) |
| 22 | 21 10 15 | 3jca | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( C e. RR* /\ A < C /\ C <_ B ) ) -> ( C e. RR /\ A < C /\ C <_ B ) ) |
| 23 | 22 | ex | |- ( ( A e. RR* /\ B e. RR ) -> ( ( C e. RR* /\ A < C /\ C <_ B ) -> ( C e. RR /\ A < C /\ C <_ B ) ) ) |
| 24 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 25 | 24 | 3anim1i | |- ( ( C e. RR /\ A < C /\ C <_ B ) -> ( C e. RR* /\ A < C /\ C <_ B ) ) |
| 26 | 23 25 | impbid1 | |- ( ( A e. RR* /\ B e. RR ) -> ( ( C e. RR* /\ A < C /\ C <_ B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) ) |
| 27 | 3 26 | bitrd | |- ( ( A e. RR* /\ B e. RR ) -> ( C e. ( A (,] B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) ) |