This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for integer exponentiation of positive reals. (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexpcl | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR+ /\ N e. ZZ ) -> A e. RR+ ) |
|
| 2 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 3 | 2 | adantr | |- ( ( A e. RR+ /\ N e. ZZ ) -> A =/= 0 ) |
| 4 | simpr | |- ( ( A e. RR+ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 5 | rpssre | |- RR+ C_ RR |
|
| 6 | ax-resscn | |- RR C_ CC |
|
| 7 | 5 6 | sstri | |- RR+ C_ CC |
| 8 | rpmulcl | |- ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ ) |
|
| 9 | 1rp | |- 1 e. RR+ |
|
| 10 | rpreccl | |- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
|
| 11 | 10 | adantr | |- ( ( x e. RR+ /\ x =/= 0 ) -> ( 1 / x ) e. RR+ ) |
| 12 | 7 8 9 11 | expcl2lem | |- ( ( A e. RR+ /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |
| 13 | 1 3 4 12 | syl3anc | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |