This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sin01bnd and cos01bnd . (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ef01bnd.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| Assertion | ef01bndlem | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef01bnd.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | 0xr | ⊢ 0 ∈ ℝ* | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
| 7 | 6 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℂ ) |
| 9 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 10 | 2 8 9 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 11 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 12 | 1 | eftlcl | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 4 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 13 | 10 11 12 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 14 | 13 | abscld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 15 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 4 ∈ ℕ0 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) | |
| 16 | 7 11 15 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
| 17 | 4re | ⊢ 4 ∈ ℝ | |
| 18 | 17 4 | readdcli | ⊢ ( 4 + 1 ) ∈ ℝ |
| 19 | faccl | ⊢ ( 4 ∈ ℕ0 → ( ! ‘ 4 ) ∈ ℕ ) | |
| 20 | 11 19 | ax-mp | ⊢ ( ! ‘ 4 ) ∈ ℕ |
| 21 | 4nn | ⊢ 4 ∈ ℕ | |
| 22 | 20 21 | nnmulcli | ⊢ ( ( ! ‘ 4 ) · 4 ) ∈ ℕ |
| 23 | nndivre | ⊢ ( ( ( 4 + 1 ) ∈ ℝ ∧ ( ( ! ‘ 4 ) · 4 ) ∈ ℕ ) → ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ∈ ℝ ) | |
| 24 | 18 22 23 | mp2an | ⊢ ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ∈ ℝ |
| 25 | remulcl | ⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ∈ ℝ ) → ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ∈ ℝ ) | |
| 26 | 16 24 25 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ∈ ℝ ) |
| 27 | 6nn | ⊢ 6 ∈ ℕ | |
| 28 | nndivre | ⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) | |
| 29 | 16 27 28 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
| 30 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 31 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) / ( ! ‘ 4 ) ) · ( ( 1 / ( 4 + 1 ) ) ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) / ( ! ‘ 4 ) ) · ( ( 1 / ( 4 + 1 ) ) ↑ 𝑛 ) ) ) | |
| 32 | 21 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 4 ∈ ℕ ) |
| 33 | absmul | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( i · 𝐴 ) ) = ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) ) | |
| 34 | 2 8 33 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( i · 𝐴 ) ) = ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) ) |
| 35 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 36 | 35 | oveq1i | ⊢ ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) = ( 1 · ( abs ‘ 𝐴 ) ) |
| 37 | 6 | simp2bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 𝐴 ) |
| 38 | 7 37 | elrpd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ+ ) |
| 39 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 40 | rpge0 | ⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 ) | |
| 41 | 39 40 | absidd | ⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 42 | 38 41 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 43 | 42 | oveq2d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 · ( abs ‘ 𝐴 ) ) = ( 1 · 𝐴 ) ) |
| 44 | 36 43 | eqtrid | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) = ( 1 · 𝐴 ) ) |
| 45 | 8 | mullidd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 46 | 34 44 45 | 3eqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( i · 𝐴 ) ) = 𝐴 ) |
| 47 | 6 | simp3bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ≤ 1 ) |
| 48 | 46 47 | eqbrtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( i · 𝐴 ) ) ≤ 1 ) |
| 49 | 1 30 31 32 10 48 | eftlub | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ) |
| 50 | 46 | oveq1d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) = ( 𝐴 ↑ 4 ) ) |
| 51 | 50 | oveq1d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ) |
| 52 | 49 51 | breqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ) |
| 53 | 3pos | ⊢ 0 < 3 | |
| 54 | 0re | ⊢ 0 ∈ ℝ | |
| 55 | 3re | ⊢ 3 ∈ ℝ | |
| 56 | 5re | ⊢ 5 ∈ ℝ | |
| 57 | 54 55 56 | ltadd1i | ⊢ ( 0 < 3 ↔ ( 0 + 5 ) < ( 3 + 5 ) ) |
| 58 | 53 57 | mpbi | ⊢ ( 0 + 5 ) < ( 3 + 5 ) |
| 59 | 5cn | ⊢ 5 ∈ ℂ | |
| 60 | 59 | addlidi | ⊢ ( 0 + 5 ) = 5 |
| 61 | cu2 | ⊢ ( 2 ↑ 3 ) = 8 | |
| 62 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
| 63 | 3cn | ⊢ 3 ∈ ℂ | |
| 64 | 59 63 | addcomi | ⊢ ( 5 + 3 ) = ( 3 + 5 ) |
| 65 | 61 62 64 | 3eqtr2ri | ⊢ ( 3 + 5 ) = ( 2 ↑ 3 ) |
| 66 | 58 60 65 | 3brtr3i | ⊢ 5 < ( 2 ↑ 3 ) |
| 67 | 2re | ⊢ 2 ∈ ℝ | |
| 68 | 1le2 | ⊢ 1 ≤ 2 | |
| 69 | 4z | ⊢ 4 ∈ ℤ | |
| 70 | 3lt4 | ⊢ 3 < 4 | |
| 71 | 55 17 70 | ltleii | ⊢ 3 ≤ 4 |
| 72 | 3z | ⊢ 3 ∈ ℤ | |
| 73 | 72 | eluz1i | ⊢ ( 4 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 4 ∈ ℤ ∧ 3 ≤ 4 ) ) |
| 74 | 69 71 73 | mpbir2an | ⊢ 4 ∈ ( ℤ≥ ‘ 3 ) |
| 75 | leexp2a | ⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ 4 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ↑ 3 ) ≤ ( 2 ↑ 4 ) ) | |
| 76 | 67 68 74 75 | mp3an | ⊢ ( 2 ↑ 3 ) ≤ ( 2 ↑ 4 ) |
| 77 | 8re | ⊢ 8 ∈ ℝ | |
| 78 | 61 77 | eqeltri | ⊢ ( 2 ↑ 3 ) ∈ ℝ |
| 79 | 2nn | ⊢ 2 ∈ ℕ | |
| 80 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 4 ∈ ℕ0 ) → ( 2 ↑ 4 ) ∈ ℕ ) | |
| 81 | 79 11 80 | mp2an | ⊢ ( 2 ↑ 4 ) ∈ ℕ |
| 82 | 81 | nnrei | ⊢ ( 2 ↑ 4 ) ∈ ℝ |
| 83 | 56 78 82 | ltletri | ⊢ ( ( 5 < ( 2 ↑ 3 ) ∧ ( 2 ↑ 3 ) ≤ ( 2 ↑ 4 ) ) → 5 < ( 2 ↑ 4 ) ) |
| 84 | 66 76 83 | mp2an | ⊢ 5 < ( 2 ↑ 4 ) |
| 85 | 6re | ⊢ 6 ∈ ℝ | |
| 86 | 85 82 | remulcli | ⊢ ( 6 · ( 2 ↑ 4 ) ) ∈ ℝ |
| 87 | 6pos | ⊢ 0 < 6 | |
| 88 | 81 | nngt0i | ⊢ 0 < ( 2 ↑ 4 ) |
| 89 | 85 82 87 88 | mulgt0ii | ⊢ 0 < ( 6 · ( 2 ↑ 4 ) ) |
| 90 | 56 82 86 89 | ltdiv1ii | ⊢ ( 5 < ( 2 ↑ 4 ) ↔ ( 5 / ( 6 · ( 2 ↑ 4 ) ) ) < ( ( 2 ↑ 4 ) / ( 6 · ( 2 ↑ 4 ) ) ) ) |
| 91 | 84 90 | mpbi | ⊢ ( 5 / ( 6 · ( 2 ↑ 4 ) ) ) < ( ( 2 ↑ 4 ) / ( 6 · ( 2 ↑ 4 ) ) ) |
| 92 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 93 | df-4 | ⊢ 4 = ( 3 + 1 ) | |
| 94 | 93 | fveq2i | ⊢ ( ! ‘ 4 ) = ( ! ‘ ( 3 + 1 ) ) |
| 95 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 96 | facp1 | ⊢ ( 3 ∈ ℕ0 → ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) ) | |
| 97 | 95 96 | ax-mp | ⊢ ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) |
| 98 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 99 | 98 93 | eqtr2i | ⊢ ( 3 + 1 ) = ( 2 ↑ 2 ) |
| 100 | 99 | oveq2i | ⊢ ( ( ! ‘ 3 ) · ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 2 ↑ 2 ) ) |
| 101 | 94 97 100 | 3eqtri | ⊢ ( ! ‘ 4 ) = ( ( ! ‘ 3 ) · ( 2 ↑ 2 ) ) |
| 102 | 101 | oveq1i | ⊢ ( ( ! ‘ 4 ) · ( 2 ↑ 2 ) ) = ( ( ( ! ‘ 3 ) · ( 2 ↑ 2 ) ) · ( 2 ↑ 2 ) ) |
| 103 | 98 | oveq2i | ⊢ ( ( ! ‘ 4 ) · ( 2 ↑ 2 ) ) = ( ( ! ‘ 4 ) · 4 ) |
| 104 | fac3 | ⊢ ( ! ‘ 3 ) = 6 | |
| 105 | 6cn | ⊢ 6 ∈ ℂ | |
| 106 | 104 105 | eqeltri | ⊢ ( ! ‘ 3 ) ∈ ℂ |
| 107 | 17 | recni | ⊢ 4 ∈ ℂ |
| 108 | 98 107 | eqeltri | ⊢ ( 2 ↑ 2 ) ∈ ℂ |
| 109 | 106 108 108 | mulassi | ⊢ ( ( ( ! ‘ 3 ) · ( 2 ↑ 2 ) ) · ( 2 ↑ 2 ) ) = ( ( ! ‘ 3 ) · ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) ) |
| 110 | 102 103 109 | 3eqtr3i | ⊢ ( ( ! ‘ 4 ) · 4 ) = ( ( ! ‘ 3 ) · ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) ) |
| 111 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 112 | 111 | oveq2i | ⊢ ( 2 ↑ ( 2 + 2 ) ) = ( 2 ↑ 4 ) |
| 113 | 2cn | ⊢ 2 ∈ ℂ | |
| 114 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 115 | expadd | ⊢ ( ( 2 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 2 ↑ ( 2 + 2 ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) ) | |
| 116 | 113 114 114 115 | mp3an | ⊢ ( 2 ↑ ( 2 + 2 ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) |
| 117 | 112 116 | eqtr3i | ⊢ ( 2 ↑ 4 ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) |
| 118 | 117 | oveq2i | ⊢ ( ( ! ‘ 3 ) · ( 2 ↑ 4 ) ) = ( ( ! ‘ 3 ) · ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) ) |
| 119 | 104 | oveq1i | ⊢ ( ( ! ‘ 3 ) · ( 2 ↑ 4 ) ) = ( 6 · ( 2 ↑ 4 ) ) |
| 120 | 110 118 119 | 3eqtr2ri | ⊢ ( 6 · ( 2 ↑ 4 ) ) = ( ( ! ‘ 4 ) · 4 ) |
| 121 | 92 120 | oveq12i | ⊢ ( 5 / ( 6 · ( 2 ↑ 4 ) ) ) = ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) |
| 122 | 81 | nncni | ⊢ ( 2 ↑ 4 ) ∈ ℂ |
| 123 | 122 | mullidi | ⊢ ( 1 · ( 2 ↑ 4 ) ) = ( 2 ↑ 4 ) |
| 124 | 123 | oveq1i | ⊢ ( ( 1 · ( 2 ↑ 4 ) ) / ( 6 · ( 2 ↑ 4 ) ) ) = ( ( 2 ↑ 4 ) / ( 6 · ( 2 ↑ 4 ) ) ) |
| 125 | 81 | nnne0i | ⊢ ( 2 ↑ 4 ) ≠ 0 |
| 126 | 122 125 | dividi | ⊢ ( ( 2 ↑ 4 ) / ( 2 ↑ 4 ) ) = 1 |
| 127 | 126 | oveq2i | ⊢ ( ( 1 / 6 ) · ( ( 2 ↑ 4 ) / ( 2 ↑ 4 ) ) ) = ( ( 1 / 6 ) · 1 ) |
| 128 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 129 | 85 87 | gt0ne0ii | ⊢ 6 ≠ 0 |
| 130 | 128 105 122 122 129 125 | divmuldivi | ⊢ ( ( 1 / 6 ) · ( ( 2 ↑ 4 ) / ( 2 ↑ 4 ) ) ) = ( ( 1 · ( 2 ↑ 4 ) ) / ( 6 · ( 2 ↑ 4 ) ) ) |
| 131 | 85 129 | rereccli | ⊢ ( 1 / 6 ) ∈ ℝ |
| 132 | 131 | recni | ⊢ ( 1 / 6 ) ∈ ℂ |
| 133 | 132 | mulridi | ⊢ ( ( 1 / 6 ) · 1 ) = ( 1 / 6 ) |
| 134 | 127 130 133 | 3eqtr3i | ⊢ ( ( 1 · ( 2 ↑ 4 ) ) / ( 6 · ( 2 ↑ 4 ) ) ) = ( 1 / 6 ) |
| 135 | 124 134 | eqtr3i | ⊢ ( ( 2 ↑ 4 ) / ( 6 · ( 2 ↑ 4 ) ) ) = ( 1 / 6 ) |
| 136 | 91 121 135 | 3brtr3i | ⊢ ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) |
| 137 | rpexpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 4 ∈ ℤ ) → ( 𝐴 ↑ 4 ) ∈ ℝ+ ) | |
| 138 | 38 69 137 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℝ+ ) |
| 139 | elrp | ⊢ ( ( 𝐴 ↑ 4 ) ∈ ℝ+ ↔ ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 4 ) ) ) | |
| 140 | ltmul2 | ⊢ ( ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ∈ ℝ ∧ ( 1 / 6 ) ∈ ℝ ∧ ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 4 ) ) ) → ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) ↔ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) ) | |
| 141 | 24 131 140 | mp3an12 | ⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 4 ) ) → ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) ↔ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) ) |
| 142 | 139 141 | sylbi | ⊢ ( ( 𝐴 ↑ 4 ) ∈ ℝ+ → ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) ↔ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) ) |
| 143 | 138 142 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) ↔ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) ) |
| 144 | 136 143 | mpbii | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) |
| 145 | 16 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℂ ) |
| 146 | divrec | ⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0 ) → ( ( 𝐴 ↑ 4 ) / 6 ) = ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) | |
| 147 | 105 129 146 | mp3an23 | ⊢ ( ( 𝐴 ↑ 4 ) ∈ ℂ → ( ( 𝐴 ↑ 4 ) / 6 ) = ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) |
| 148 | 145 147 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) = ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) |
| 149 | 144 148 | breqtrrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |
| 150 | 14 26 29 52 149 | lelttrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |