This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos01bnd | |- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | 0xr | |- 0 e. RR* |
|
| 3 | elioc2 | |- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
|
| 4 | 2 1 3 | mp2an | |- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
| 5 | 4 | simp1bi | |- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
| 6 | 5 | resqcld | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. RR ) |
| 7 | 6 | rehalfcld | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) e. RR ) |
| 8 | resubcl | |- ( ( 1 e. RR /\ ( ( A ^ 2 ) / 2 ) e. RR ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) |
|
| 9 | 1 7 8 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) |
| 10 | 9 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. CC ) |
| 11 | ax-icn | |- _i e. CC |
|
| 12 | 5 | recnd | |- ( A e. ( 0 (,] 1 ) -> A e. CC ) |
| 13 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 14 | 11 12 13 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) |
| 15 | 4nn0 | |- 4 e. NN0 |
|
| 16 | eqid | |- ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
|
| 17 | 16 | eftlcl | |- ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 18 | 14 15 17 | sylancl | |- ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 19 | 18 | recld | |- ( A e. ( 0 (,] 1 ) -> ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) |
| 20 | 19 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. CC ) |
| 21 | 16 | recos4p | |- ( A e. RR -> ( cos ` A ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 22 | 5 21 | syl | |- ( A e. ( 0 (,] 1 ) -> ( cos ` A ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 23 | 10 20 22 | mvrladdd | |- ( A e. ( 0 (,] 1 ) -> ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) = ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 24 | 23 | fveq2d | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) = ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) |
| 25 | 20 | abscld | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) e. RR ) |
| 26 | 18 | abscld | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) |
| 27 | 6nn | |- 6 e. NN |
|
| 28 | nndivre | |- ( ( ( A ^ 2 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 2 ) / 6 ) e. RR ) |
|
| 29 | 6 27 28 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) e. RR ) |
| 30 | absrele | |- ( sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
|
| 31 | 18 30 | syl | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 32 | reexpcl | |- ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) |
|
| 33 | 5 15 32 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) |
| 34 | nndivre | |- ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
|
| 35 | 33 27 34 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
| 36 | 16 | ef01bndlem | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 4 ) / 6 ) ) |
| 37 | 2nn0 | |- 2 e. NN0 |
|
| 38 | 37 | a1i | |- ( A e. ( 0 (,] 1 ) -> 2 e. NN0 ) |
| 39 | 4z | |- 4 e. ZZ |
|
| 40 | 2re | |- 2 e. RR |
|
| 41 | 4re | |- 4 e. RR |
|
| 42 | 2lt4 | |- 2 < 4 |
|
| 43 | 40 41 42 | ltleii | |- 2 <_ 4 |
| 44 | 2z | |- 2 e. ZZ |
|
| 45 | 44 | eluz1i | |- ( 4 e. ( ZZ>= ` 2 ) <-> ( 4 e. ZZ /\ 2 <_ 4 ) ) |
| 46 | 39 43 45 | mpbir2an | |- 4 e. ( ZZ>= ` 2 ) |
| 47 | 46 | a1i | |- ( A e. ( 0 (,] 1 ) -> 4 e. ( ZZ>= ` 2 ) ) |
| 48 | 4 | simp2bi | |- ( A e. ( 0 (,] 1 ) -> 0 < A ) |
| 49 | 0re | |- 0 e. RR |
|
| 50 | ltle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
|
| 51 | 49 5 50 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( 0 < A -> 0 <_ A ) ) |
| 52 | 48 51 | mpd | |- ( A e. ( 0 (,] 1 ) -> 0 <_ A ) |
| 53 | 4 | simp3bi | |- ( A e. ( 0 (,] 1 ) -> A <_ 1 ) |
| 54 | 5 38 47 52 53 | leexp2rd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) <_ ( A ^ 2 ) ) |
| 55 | 6re | |- 6 e. RR |
|
| 56 | 55 | a1i | |- ( A e. ( 0 (,] 1 ) -> 6 e. RR ) |
| 57 | 6pos | |- 0 < 6 |
|
| 58 | 57 | a1i | |- ( A e. ( 0 (,] 1 ) -> 0 < 6 ) |
| 59 | lediv1 | |- ( ( ( A ^ 4 ) e. RR /\ ( A ^ 2 ) e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( A ^ 4 ) <_ ( A ^ 2 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) ) |
|
| 60 | 33 6 56 58 59 | syl112anc | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) <_ ( A ^ 2 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) ) |
| 61 | 54 60 | mpbid | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) |
| 62 | 26 35 29 36 61 | ltletrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 2 ) / 6 ) ) |
| 63 | 25 26 29 31 62 | lelttrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) < ( ( A ^ 2 ) / 6 ) ) |
| 64 | 24 63 | eqbrtrd | |- ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) ) |
| 65 | 5 | recoscld | |- ( A e. ( 0 (,] 1 ) -> ( cos ` A ) e. RR ) |
| 66 | 65 9 29 | absdifltd | |- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) <-> ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) /\ ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) ) ) |
| 67 | 1cnd | |- ( A e. ( 0 (,] 1 ) -> 1 e. CC ) |
|
| 68 | 7 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) e. CC ) |
| 69 | 29 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) e. CC ) |
| 70 | 67 68 69 | subsub4d | |- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) ) ) |
| 71 | halfpm6th | |- ( ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) /\ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) |
|
| 72 | 71 | simpri | |- ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) |
| 73 | 72 | oveq2i | |- ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) |
| 74 | 6 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. CC ) |
| 75 | 2cn | |- 2 e. CC |
|
| 76 | 2ne0 | |- 2 =/= 0 |
|
| 77 | 75 76 | reccli | |- ( 1 / 2 ) e. CC |
| 78 | 6cn | |- 6 e. CC |
|
| 79 | 27 | nnne0i | |- 6 =/= 0 |
| 80 | 78 79 | reccli | |- ( 1 / 6 ) e. CC |
| 81 | adddi | |- ( ( ( A ^ 2 ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
|
| 82 | 77 80 81 | mp3an23 | |- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 83 | 74 82 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 84 | 73 83 | eqtr3id | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 85 | 3cn | |- 3 e. CC |
|
| 86 | 3ne0 | |- 3 =/= 0 |
|
| 87 | 85 86 | pm3.2i | |- ( 3 e. CC /\ 3 =/= 0 ) |
| 88 | div12 | |- ( ( 2 e. CC /\ ( A ^ 2 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
|
| 89 | 75 87 88 | mp3an13 | |- ( ( A ^ 2 ) e. CC -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 90 | 74 89 | syl | |- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
| 91 | divrec | |- ( ( ( A ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) |
|
| 92 | 75 76 91 | mp3an23 | |- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) |
| 93 | 74 92 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) |
| 94 | divrec | |- ( ( ( A ^ 2 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) |
|
| 95 | 78 79 94 | mp3an23 | |- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) |
| 96 | 74 95 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) |
| 97 | 93 96 | oveq12d | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 98 | 84 90 97 | 3eqtr4rd | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) = ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) |
| 99 | 98 | oveq2d | |- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) ) = ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) |
| 100 | 70 99 | eqtrd | |- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) |
| 101 | 100 | breq1d | |- ( A e. ( 0 (,] 1 ) -> ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) <-> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) ) |
| 102 | 67 68 69 | subsubd | |- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) |
| 103 | 71 | simpli | |- ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) |
| 104 | 103 | oveq2i | |- ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) |
| 105 | subdi | |- ( ( ( A ^ 2 ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
|
| 106 | 77 80 105 | mp3an23 | |- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 107 | 74 106 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 108 | 104 107 | eqtr3id | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 1 / 3 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 109 | divrec | |- ( ( ( A ^ 2 ) e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) |
|
| 110 | 85 86 109 | mp3an23 | |- ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) |
| 111 | 74 110 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) |
| 112 | 93 96 | oveq12d | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) |
| 113 | 108 111 112 | 3eqtr4rd | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) = ( ( A ^ 2 ) / 3 ) ) |
| 114 | 113 | oveq2d | |- ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) ) = ( 1 - ( ( A ^ 2 ) / 3 ) ) ) |
| 115 | 102 114 | eqtr3d | |- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( ( A ^ 2 ) / 3 ) ) ) |
| 116 | 115 | breq2d | |- ( A e. ( 0 (,] 1 ) -> ( ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) <-> ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |
| 117 | 101 116 | anbi12d | |- ( A e. ( 0 (,] 1 ) -> ( ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) /\ ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) <-> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) ) |
| 118 | 66 117 | bitrd | |- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) <-> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) ) |
| 119 | 64 118 | mpbid | |- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |