This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex number multiplication is a continuous function. Version of mulcn using maps-to notation, which does not require ax-mulf . (Contributed by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpomulcn.j | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | mpomulcn | |- ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( J tX J ) Cn J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpomulcn.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | mpomulf | |- ( x e. CC , y e. CC |-> ( x x. y ) ) : ( CC X. CC ) --> CC |
|
| 3 | mulcn2 | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> E. z e. RR+ E. w e. RR+ A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) ) |
|
| 4 | simplr | |- ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) -> u e. CC ) |
|
| 5 | simplll | |- ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) -> v e. CC ) |
|
| 6 | simplr | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> d = u ) |
|
| 7 | 6 | fvoveq1d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( abs ` ( d - b ) ) = ( abs ` ( u - b ) ) ) |
| 8 | 7 | breq1d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( ( abs ` ( d - b ) ) < z <-> ( abs ` ( u - b ) ) < z ) ) |
| 9 | simpr | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> e = v ) |
|
| 10 | 9 | fvoveq1d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( abs ` ( e - c ) ) = ( abs ` ( v - c ) ) ) |
| 11 | 10 | breq1d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( ( abs ` ( e - c ) ) < w <-> ( abs ` ( v - c ) ) < w ) ) |
| 12 | 8 11 | anbi12d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) <-> ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) ) ) |
| 13 | simplr | |- ( ( ( ( v e. CC /\ u e. CC ) /\ d = u ) /\ e = v ) -> d = u ) |
|
| 14 | 13 | eqcomd | |- ( ( ( ( v e. CC /\ u e. CC ) /\ d = u ) /\ e = v ) -> u = d ) |
| 15 | simpr | |- ( ( ( ( v e. CC /\ u e. CC ) /\ d = u ) /\ e = v ) -> e = v ) |
|
| 16 | 15 | eqcomd | |- ( ( ( ( v e. CC /\ u e. CC ) /\ d = u ) /\ e = v ) -> v = e ) |
| 17 | 14 16 | oveq12d | |- ( ( ( ( v e. CC /\ u e. CC ) /\ d = u ) /\ e = v ) -> ( u x. v ) = ( d x. e ) ) |
| 18 | simplr | |- ( ( ( v e. CC /\ u e. CC ) /\ d = u ) -> u e. CC ) |
|
| 19 | simplll | |- ( ( ( ( v e. CC /\ u e. CC ) /\ d = u ) /\ e = v ) -> v e. CC ) |
|
| 20 | tru | |- T. |
|
| 21 | oveq1 | |- ( x = u -> ( x x. y ) = ( u x. y ) ) |
|
| 22 | oveq2 | |- ( y = v -> ( u x. y ) = ( u x. v ) ) |
|
| 23 | 21 22 | cbvmpov | |- ( x e. CC , y e. CC |-> ( x x. y ) ) = ( u e. CC , v e. CC |-> ( u x. v ) ) |
| 24 | 23 | a1i | |- ( T. -> ( x e. CC , y e. CC |-> ( x x. y ) ) = ( u e. CC , v e. CC |-> ( u x. v ) ) ) |
| 25 | eqidd | |- ( T. -> <. u , v >. = <. u , v >. ) |
|
| 26 | mulcl | |- ( ( u e. CC /\ v e. CC ) -> ( u x. v ) e. CC ) |
|
| 27 | 26 | 3adant1 | |- ( ( T. /\ u e. CC /\ v e. CC ) -> ( u x. v ) e. CC ) |
| 28 | 24 25 27 | fvmpopr2d | |- ( ( T. /\ u e. CC /\ v e. CC ) -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) = ( u x. v ) ) |
| 29 | 28 | eqcomd | |- ( ( T. /\ u e. CC /\ v e. CC ) -> ( u x. v ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) ) |
| 30 | 20 29 | mp3an1 | |- ( ( u e. CC /\ v e. CC ) -> ( u x. v ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) ) |
| 31 | df-ov | |- ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) |
|
| 32 | 30 31 | eqtr4di | |- ( ( u e. CC /\ v e. CC ) -> ( u x. v ) = ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) ) |
| 33 | 18 19 32 | syl2an2r | |- ( ( ( ( v e. CC /\ u e. CC ) /\ d = u ) /\ e = v ) -> ( u x. v ) = ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) ) |
| 34 | 17 33 | eqtr3d | |- ( ( ( ( v e. CC /\ u e. CC ) /\ d = u ) /\ e = v ) -> ( d x. e ) = ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) ) |
| 35 | 34 | adantllr | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( d x. e ) = ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) ) |
| 36 | df-ov | |- ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. b , c >. ) |
|
| 37 | oveq1 | |- ( x = b -> ( x x. y ) = ( b x. y ) ) |
|
| 38 | oveq2 | |- ( y = c -> ( b x. y ) = ( b x. c ) ) |
|
| 39 | 37 38 | cbvmpov | |- ( x e. CC , y e. CC |-> ( x x. y ) ) = ( b e. CC , c e. CC |-> ( b x. c ) ) |
| 40 | 39 | a1i | |- ( a e. RR+ -> ( x e. CC , y e. CC |-> ( x x. y ) ) = ( b e. CC , c e. CC |-> ( b x. c ) ) ) |
| 41 | eqidd | |- ( a e. RR+ -> <. b , c >. = <. b , c >. ) |
|
| 42 | mulcl | |- ( ( b e. CC /\ c e. CC ) -> ( b x. c ) e. CC ) |
|
| 43 | 42 | 3adant1 | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> ( b x. c ) e. CC ) |
| 44 | 40 41 43 | fvmpopr2d | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. b , c >. ) = ( b x. c ) ) |
| 45 | 36 44 | eqtr2id | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> ( b x. c ) = ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) |
| 46 | 45 | ad3antlr | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( b x. c ) = ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) |
| 47 | 35 46 | oveq12d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( ( d x. e ) - ( b x. c ) ) = ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) |
| 48 | 47 | fveq2d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) = ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) ) |
| 49 | 48 | breq1d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a <-> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) |
| 50 | 12 49 | imbi12d | |- ( ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) /\ e = v ) -> ( ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) <-> ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) |
| 51 | 5 50 | rspcdv | |- ( ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) /\ d = u ) -> ( A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) -> ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) |
| 52 | 4 51 | rspcimdv | |- ( ( ( v e. CC /\ u e. CC ) /\ ( a e. RR+ /\ b e. CC /\ c e. CC ) ) -> ( A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) -> ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) |
| 53 | 52 | expimpd | |- ( ( v e. CC /\ u e. CC ) -> ( ( ( a e. RR+ /\ b e. CC /\ c e. CC ) /\ A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) ) -> ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) |
| 54 | 53 | ex | |- ( v e. CC -> ( u e. CC -> ( ( ( a e. RR+ /\ b e. CC /\ c e. CC ) /\ A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) ) -> ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) ) |
| 55 | 54 | com13 | |- ( ( ( a e. RR+ /\ b e. CC /\ c e. CC ) /\ A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) ) -> ( u e. CC -> ( v e. CC -> ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) ) |
| 56 | 55 | ralrimdv | |- ( ( ( a e. RR+ /\ b e. CC /\ c e. CC ) /\ A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) ) -> ( u e. CC -> A. v e. CC ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) |
| 57 | 56 | ex | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> ( A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) -> ( u e. CC -> A. v e. CC ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) ) |
| 58 | 57 | ralrimdv | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> ( A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) -> A. u e. CC A. v e. CC ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) |
| 59 | 58 | reximdv | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> ( E. w e. RR+ A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) -> E. w e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) |
| 60 | 59 | reximdv | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> ( E. z e. RR+ E. w e. RR+ A. d e. CC A. e e. CC ( ( ( abs ` ( d - b ) ) < z /\ ( abs ` ( e - c ) ) < w ) -> ( abs ` ( ( d x. e ) - ( b x. c ) ) ) < a ) -> E. z e. RR+ E. w e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) ) |
| 61 | 3 60 | mpd | |- ( ( a e. RR+ /\ b e. CC /\ c e. CC ) -> E. z e. RR+ E. w e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - b ) ) < z /\ ( abs ` ( v - c ) ) < w ) -> ( abs ` ( ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) - ( b ( x e. CC , y e. CC |-> ( x x. y ) ) c ) ) ) < a ) ) |
| 62 | 1 2 61 | addcnlem | |- ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( J tX J ) Cn J ) |