This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmpt2ss.1 | |- J = ( TopOpen ` CCfld ) |
|
| cncfmpt2ss.2 | |- F e. ( ( J tX J ) Cn J ) |
||
| cncfmpt2ss.3 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> S ) ) |
||
| cncfmpt2ss.4 | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> S ) ) |
||
| cncfmpt2ss.5 | |- S C_ CC |
||
| cncfmpt2ss.6 | |- ( ( A e. S /\ B e. S ) -> ( A F B ) e. S ) |
||
| Assertion | cncfmpt2ss | |- ( ph -> ( x e. X |-> ( A F B ) ) e. ( X -cn-> S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmpt2ss.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | cncfmpt2ss.2 | |- F e. ( ( J tX J ) Cn J ) |
|
| 3 | cncfmpt2ss.3 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> S ) ) |
|
| 4 | cncfmpt2ss.4 | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> S ) ) |
|
| 5 | cncfmpt2ss.5 | |- S C_ CC |
|
| 6 | cncfmpt2ss.6 | |- ( ( A e. S /\ B e. S ) -> ( A F B ) e. S ) |
|
| 7 | cncff | |- ( ( x e. X |-> A ) e. ( X -cn-> S ) -> ( x e. X |-> A ) : X --> S ) |
|
| 8 | 3 7 | syl | |- ( ph -> ( x e. X |-> A ) : X --> S ) |
| 9 | 8 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> A e. S ) |
| 10 | cncff | |- ( ( x e. X |-> B ) e. ( X -cn-> S ) -> ( x e. X |-> B ) : X --> S ) |
|
| 11 | 4 10 | syl | |- ( ph -> ( x e. X |-> B ) : X --> S ) |
| 12 | 11 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> B e. S ) |
| 13 | 9 12 6 | syl2anc | |- ( ( ph /\ x e. X ) -> ( A F B ) e. S ) |
| 14 | 13 | fmpttd | |- ( ph -> ( x e. X |-> ( A F B ) ) : X --> S ) |
| 15 | 2 | a1i | |- ( ph -> F e. ( ( J tX J ) Cn J ) ) |
| 16 | ssid | |- CC C_ CC |
|
| 17 | cncfss | |- ( ( S C_ CC /\ CC C_ CC ) -> ( X -cn-> S ) C_ ( X -cn-> CC ) ) |
|
| 18 | 5 16 17 | mp2an | |- ( X -cn-> S ) C_ ( X -cn-> CC ) |
| 19 | 18 3 | sselid | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
| 20 | 18 4 | sselid | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
| 21 | 1 15 19 20 | cncfmpt2f | |- ( ph -> ( x e. X |-> ( A F B ) ) e. ( X -cn-> CC ) ) |
| 22 | cncfcdm | |- ( ( S C_ CC /\ ( x e. X |-> ( A F B ) ) e. ( X -cn-> CC ) ) -> ( ( x e. X |-> ( A F B ) ) e. ( X -cn-> S ) <-> ( x e. X |-> ( A F B ) ) : X --> S ) ) |
|
| 23 | 5 21 22 | sylancr | |- ( ph -> ( ( x e. X |-> ( A F B ) ) e. ( X -cn-> S ) <-> ( x e. X |-> ( A F B ) ) : X --> S ) ) |
| 24 | 14 23 | mpbird | |- ( ph -> ( x e. X |-> ( A F B ) ) e. ( X -cn-> S ) ) |