This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A ( x ) , C ( x ) are differentiable functions and A<_ C` , then for x <_ y , A ( y ) - A ( x ) <_ C ( y ) - C ( x ) ` . (Contributed by Mario Carneiro, 16-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvle.m | |- ( ph -> M e. RR ) |
|
| dvle.n | |- ( ph -> N e. RR ) |
||
| dvle.a | |- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
||
| dvle.b | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
||
| dvle.c | |- ( ph -> ( x e. ( M [,] N ) |-> C ) e. ( ( M [,] N ) -cn-> RR ) ) |
||
| dvle.d | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> C ) ) = ( x e. ( M (,) N ) |-> D ) ) |
||
| dvle.f | |- ( ( ph /\ x e. ( M (,) N ) ) -> B <_ D ) |
||
| dvle.x | |- ( ph -> X e. ( M [,] N ) ) |
||
| dvle.y | |- ( ph -> Y e. ( M [,] N ) ) |
||
| dvle.l | |- ( ph -> X <_ Y ) |
||
| dvle.p | |- ( x = X -> A = P ) |
||
| dvle.q | |- ( x = X -> C = Q ) |
||
| dvle.r | |- ( x = Y -> A = R ) |
||
| dvle.s | |- ( x = Y -> C = S ) |
||
| Assertion | dvle | |- ( ph -> ( R - P ) <_ ( S - Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvle.m | |- ( ph -> M e. RR ) |
|
| 2 | dvle.n | |- ( ph -> N e. RR ) |
|
| 3 | dvle.a | |- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
|
| 4 | dvle.b | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
|
| 5 | dvle.c | |- ( ph -> ( x e. ( M [,] N ) |-> C ) e. ( ( M [,] N ) -cn-> RR ) ) |
|
| 6 | dvle.d | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> C ) ) = ( x e. ( M (,) N ) |-> D ) ) |
|
| 7 | dvle.f | |- ( ( ph /\ x e. ( M (,) N ) ) -> B <_ D ) |
|
| 8 | dvle.x | |- ( ph -> X e. ( M [,] N ) ) |
|
| 9 | dvle.y | |- ( ph -> Y e. ( M [,] N ) ) |
|
| 10 | dvle.l | |- ( ph -> X <_ Y ) |
|
| 11 | dvle.p | |- ( x = X -> A = P ) |
|
| 12 | dvle.q | |- ( x = X -> C = Q ) |
|
| 13 | dvle.r | |- ( x = Y -> A = R ) |
|
| 14 | dvle.s | |- ( x = Y -> C = S ) |
|
| 15 | 13 | eleq1d | |- ( x = Y -> ( A e. RR <-> R e. RR ) ) |
| 16 | cncff | |- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
|
| 17 | 3 16 | syl | |- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 18 | eqid | |- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
|
| 19 | 18 | fmpt | |- ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 20 | 17 19 | sylibr | |- ( ph -> A. x e. ( M [,] N ) A e. RR ) |
| 21 | 15 20 9 | rspcdva | |- ( ph -> R e. RR ) |
| 22 | 14 | eleq1d | |- ( x = Y -> ( C e. RR <-> S e. RR ) ) |
| 23 | cncff | |- ( ( x e. ( M [,] N ) |-> C ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> C ) : ( M [,] N ) --> RR ) |
|
| 24 | 5 23 | syl | |- ( ph -> ( x e. ( M [,] N ) |-> C ) : ( M [,] N ) --> RR ) |
| 25 | eqid | |- ( x e. ( M [,] N ) |-> C ) = ( x e. ( M [,] N ) |-> C ) |
|
| 26 | 25 | fmpt | |- ( A. x e. ( M [,] N ) C e. RR <-> ( x e. ( M [,] N ) |-> C ) : ( M [,] N ) --> RR ) |
| 27 | 24 26 | sylibr | |- ( ph -> A. x e. ( M [,] N ) C e. RR ) |
| 28 | 22 27 9 | rspcdva | |- ( ph -> S e. RR ) |
| 29 | 12 | eleq1d | |- ( x = X -> ( C e. RR <-> Q e. RR ) ) |
| 30 | 29 27 8 | rspcdva | |- ( ph -> Q e. RR ) |
| 31 | 28 30 | resubcld | |- ( ph -> ( S - Q ) e. RR ) |
| 32 | 11 | eleq1d | |- ( x = X -> ( A e. RR <-> P e. RR ) ) |
| 33 | 32 20 8 | rspcdva | |- ( ph -> P e. RR ) |
| 34 | 21 | recnd | |- ( ph -> R e. CC ) |
| 35 | 30 | recnd | |- ( ph -> Q e. CC ) |
| 36 | 28 | recnd | |- ( ph -> S e. CC ) |
| 37 | 35 36 | subcld | |- ( ph -> ( Q - S ) e. CC ) |
| 38 | 34 37 | addcomd | |- ( ph -> ( R + ( Q - S ) ) = ( ( Q - S ) + R ) ) |
| 39 | 34 36 35 | subsub2d | |- ( ph -> ( R - ( S - Q ) ) = ( R + ( Q - S ) ) ) |
| 40 | 35 36 34 | subsubd | |- ( ph -> ( Q - ( S - R ) ) = ( ( Q - S ) + R ) ) |
| 41 | 38 39 40 | 3eqtr4d | |- ( ph -> ( R - ( S - Q ) ) = ( Q - ( S - R ) ) ) |
| 42 | 28 21 | resubcld | |- ( ph -> ( S - R ) e. RR ) |
| 43 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 44 | 43 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 45 | ax-resscn | |- RR C_ CC |
|
| 46 | resubcl | |- ( ( C e. RR /\ A e. RR ) -> ( C - A ) e. RR ) |
|
| 47 | 43 44 5 3 45 46 | cncfmpt2ss | |- ( ph -> ( x e. ( M [,] N ) |-> ( C - A ) ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 48 | 45 | a1i | |- ( ph -> RR C_ CC ) |
| 49 | iccssre | |- ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) |
|
| 50 | 1 2 49 | syl2anc | |- ( ph -> ( M [,] N ) C_ RR ) |
| 51 | 24 | fvmptelcdm | |- ( ( ph /\ x e. ( M [,] N ) ) -> C e. RR ) |
| 52 | 17 | fvmptelcdm | |- ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 53 | 51 52 | resubcld | |- ( ( ph /\ x e. ( M [,] N ) ) -> ( C - A ) e. RR ) |
| 54 | 53 | recnd | |- ( ( ph /\ x e. ( M [,] N ) ) -> ( C - A ) e. CC ) |
| 55 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 56 | iccntr | |- ( ( M e. RR /\ N e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( M [,] N ) ) = ( M (,) N ) ) |
|
| 57 | 1 2 56 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( M [,] N ) ) = ( M (,) N ) ) |
| 58 | 48 50 54 55 43 57 | dvmptntr | |- ( ph -> ( RR _D ( x e. ( M [,] N ) |-> ( C - A ) ) ) = ( RR _D ( x e. ( M (,) N ) |-> ( C - A ) ) ) ) |
| 59 | reelprrecn | |- RR e. { RR , CC } |
|
| 60 | 59 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 61 | ioossicc | |- ( M (,) N ) C_ ( M [,] N ) |
|
| 62 | 61 | sseli | |- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
| 63 | 51 | recnd | |- ( ( ph /\ x e. ( M [,] N ) ) -> C e. CC ) |
| 64 | 62 63 | sylan2 | |- ( ( ph /\ x e. ( M (,) N ) ) -> C e. CC ) |
| 65 | lerel | |- Rel <_ |
|
| 66 | 65 | brrelex2i | |- ( B <_ D -> D e. _V ) |
| 67 | 7 66 | syl | |- ( ( ph /\ x e. ( M (,) N ) ) -> D e. _V ) |
| 68 | 52 | recnd | |- ( ( ph /\ x e. ( M [,] N ) ) -> A e. CC ) |
| 69 | 62 68 | sylan2 | |- ( ( ph /\ x e. ( M (,) N ) ) -> A e. CC ) |
| 70 | 65 | brrelex1i | |- ( B <_ D -> B e. _V ) |
| 71 | 7 70 | syl | |- ( ( ph /\ x e. ( M (,) N ) ) -> B e. _V ) |
| 72 | 60 64 67 6 69 71 4 | dvmptsub | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> ( C - A ) ) ) = ( x e. ( M (,) N ) |-> ( D - B ) ) ) |
| 73 | 58 72 | eqtrd | |- ( ph -> ( RR _D ( x e. ( M [,] N ) |-> ( C - A ) ) ) = ( x e. ( M (,) N ) |-> ( D - B ) ) ) |
| 74 | 62 51 | sylan2 | |- ( ( ph /\ x e. ( M (,) N ) ) -> C e. RR ) |
| 75 | 74 | fmpttd | |- ( ph -> ( x e. ( M (,) N ) |-> C ) : ( M (,) N ) --> RR ) |
| 76 | ioossre | |- ( M (,) N ) C_ RR |
|
| 77 | dvfre | |- ( ( ( x e. ( M (,) N ) |-> C ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> C ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) --> RR ) |
|
| 78 | 75 76 77 | sylancl | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> C ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) --> RR ) |
| 79 | 6 | dmeqd | |- ( ph -> dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) = dom ( x e. ( M (,) N ) |-> D ) ) |
| 80 | 67 | ralrimiva | |- ( ph -> A. x e. ( M (,) N ) D e. _V ) |
| 81 | dmmptg | |- ( A. x e. ( M (,) N ) D e. _V -> dom ( x e. ( M (,) N ) |-> D ) = ( M (,) N ) ) |
|
| 82 | 80 81 | syl | |- ( ph -> dom ( x e. ( M (,) N ) |-> D ) = ( M (,) N ) ) |
| 83 | 79 82 | eqtrd | |- ( ph -> dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) = ( M (,) N ) ) |
| 84 | 6 83 | feq12d | |- ( ph -> ( ( RR _D ( x e. ( M (,) N ) |-> C ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) --> RR <-> ( x e. ( M (,) N ) |-> D ) : ( M (,) N ) --> RR ) ) |
| 85 | 78 84 | mpbid | |- ( ph -> ( x e. ( M (,) N ) |-> D ) : ( M (,) N ) --> RR ) |
| 86 | 85 | fvmptelcdm | |- ( ( ph /\ x e. ( M (,) N ) ) -> D e. RR ) |
| 87 | 62 52 | sylan2 | |- ( ( ph /\ x e. ( M (,) N ) ) -> A e. RR ) |
| 88 | 87 | fmpttd | |- ( ph -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) |
| 89 | dvfre | |- ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
|
| 90 | 88 76 89 | sylancl | |- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
| 91 | 4 | dmeqd | |- ( ph -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) |
| 92 | 71 | ralrimiva | |- ( ph -> A. x e. ( M (,) N ) B e. _V ) |
| 93 | dmmptg | |- ( A. x e. ( M (,) N ) B e. _V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
|
| 94 | 92 93 | syl | |- ( ph -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
| 95 | 91 94 | eqtrd | |- ( ph -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) |
| 96 | 4 95 | feq12d | |- ( ph -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) |
| 97 | 90 96 | mpbid | |- ( ph -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
| 98 | 97 | fvmptelcdm | |- ( ( ph /\ x e. ( M (,) N ) ) -> B e. RR ) |
| 99 | 86 98 | resubcld | |- ( ( ph /\ x e. ( M (,) N ) ) -> ( D - B ) e. RR ) |
| 100 | 86 98 | subge0d | |- ( ( ph /\ x e. ( M (,) N ) ) -> ( 0 <_ ( D - B ) <-> B <_ D ) ) |
| 101 | 7 100 | mpbird | |- ( ( ph /\ x e. ( M (,) N ) ) -> 0 <_ ( D - B ) ) |
| 102 | elrege0 | |- ( ( D - B ) e. ( 0 [,) +oo ) <-> ( ( D - B ) e. RR /\ 0 <_ ( D - B ) ) ) |
|
| 103 | 99 101 102 | sylanbrc | |- ( ( ph /\ x e. ( M (,) N ) ) -> ( D - B ) e. ( 0 [,) +oo ) ) |
| 104 | 73 103 | fmpt3d | |- ( ph -> ( RR _D ( x e. ( M [,] N ) |-> ( C - A ) ) ) : ( M (,) N ) --> ( 0 [,) +oo ) ) |
| 105 | 1 2 47 104 8 9 10 | dvge0 | |- ( ph -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` X ) <_ ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` Y ) ) |
| 106 | 12 11 | oveq12d | |- ( x = X -> ( C - A ) = ( Q - P ) ) |
| 107 | eqid | |- ( x e. ( M [,] N ) |-> ( C - A ) ) = ( x e. ( M [,] N ) |-> ( C - A ) ) |
|
| 108 | ovex | |- ( C - A ) e. _V |
|
| 109 | 106 107 108 | fvmpt3i | |- ( X e. ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` X ) = ( Q - P ) ) |
| 110 | 8 109 | syl | |- ( ph -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` X ) = ( Q - P ) ) |
| 111 | 14 13 | oveq12d | |- ( x = Y -> ( C - A ) = ( S - R ) ) |
| 112 | 111 107 108 | fvmpt3i | |- ( Y e. ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` Y ) = ( S - R ) ) |
| 113 | 9 112 | syl | |- ( ph -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` Y ) = ( S - R ) ) |
| 114 | 105 110 113 | 3brtr3d | |- ( ph -> ( Q - P ) <_ ( S - R ) ) |
| 115 | 30 33 42 114 | subled | |- ( ph -> ( Q - ( S - R ) ) <_ P ) |
| 116 | 41 115 | eqbrtrd | |- ( ph -> ( R - ( S - Q ) ) <_ P ) |
| 117 | 21 31 33 116 | subled | |- ( ph -> ( R - P ) <_ ( S - Q ) ) |