This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is continuous at B iff its limit at B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnplimc.k | |- K = ( TopOpen ` CCfld ) |
|
| cnplimc.j | |- J = ( K |`t A ) |
||
| Assertion | cnplimc | |- ( ( A C_ CC /\ B e. A ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnplimc.k | |- K = ( TopOpen ` CCfld ) |
|
| 2 | cnplimc.j | |- J = ( K |`t A ) |
|
| 3 | 1 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 4 | simpl | |- ( ( A C_ CC /\ B e. A ) -> A C_ CC ) |
|
| 5 | resttopon | |- ( ( K e. ( TopOn ` CC ) /\ A C_ CC ) -> ( K |`t A ) e. ( TopOn ` A ) ) |
|
| 6 | 3 4 5 | sylancr | |- ( ( A C_ CC /\ B e. A ) -> ( K |`t A ) e. ( TopOn ` A ) ) |
| 7 | 2 6 | eqeltrid | |- ( ( A C_ CC /\ B e. A ) -> J e. ( TopOn ` A ) ) |
| 8 | cnpf2 | |- ( ( J e. ( TopOn ` A ) /\ K e. ( TopOn ` CC ) /\ F e. ( ( J CnP K ) ` B ) ) -> F : A --> CC ) |
|
| 9 | 8 | 3expia | |- ( ( J e. ( TopOn ` A ) /\ K e. ( TopOn ` CC ) ) -> ( F e. ( ( J CnP K ) ` B ) -> F : A --> CC ) ) |
| 10 | 7 3 9 | sylancl | |- ( ( A C_ CC /\ B e. A ) -> ( F e. ( ( J CnP K ) ` B ) -> F : A --> CC ) ) |
| 11 | 10 | pm4.71rd | |- ( ( A C_ CC /\ B e. A ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ F e. ( ( J CnP K ) ` B ) ) ) ) |
| 12 | simpr | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> F : A --> CC ) |
|
| 13 | simplr | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> B e. A ) |
|
| 14 | 13 | snssd | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> { B } C_ A ) |
| 15 | ssequn2 | |- ( { B } C_ A <-> ( A u. { B } ) = A ) |
|
| 16 | 14 15 | sylib | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> ( A u. { B } ) = A ) |
| 17 | 16 | feq2d | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> ( F : ( A u. { B } ) --> CC <-> F : A --> CC ) ) |
| 18 | 12 17 | mpbird | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> F : ( A u. { B } ) --> CC ) |
| 19 | 18 | feqmptd | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> F = ( x e. ( A u. { B } ) |-> ( F ` x ) ) ) |
| 20 | 16 | oveq2d | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> ( K |`t ( A u. { B } ) ) = ( K |`t A ) ) |
| 21 | 2 20 | eqtr4id | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> J = ( K |`t ( A u. { B } ) ) ) |
| 22 | 21 | oveq1d | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> ( J CnP K ) = ( ( K |`t ( A u. { B } ) ) CnP K ) ) |
| 23 | 22 | fveq1d | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> ( ( J CnP K ) ` B ) = ( ( ( K |`t ( A u. { B } ) ) CnP K ) ` B ) ) |
| 24 | 19 23 | eleq12d | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( x e. ( A u. { B } ) |-> ( F ` x ) ) e. ( ( ( K |`t ( A u. { B } ) ) CnP K ) ` B ) ) ) |
| 25 | eqid | |- ( K |`t ( A u. { B } ) ) = ( K |`t ( A u. { B } ) ) |
|
| 26 | ifid | |- if ( x = B , ( F ` x ) , ( F ` x ) ) = ( F ` x ) |
|
| 27 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 28 | 27 | adantl | |- ( ( x e. ( A u. { B } ) /\ x = B ) -> ( F ` x ) = ( F ` B ) ) |
| 29 | 28 | ifeq1da | |- ( x e. ( A u. { B } ) -> if ( x = B , ( F ` x ) , ( F ` x ) ) = if ( x = B , ( F ` B ) , ( F ` x ) ) ) |
| 30 | 26 29 | eqtr3id | |- ( x e. ( A u. { B } ) -> ( F ` x ) = if ( x = B , ( F ` B ) , ( F ` x ) ) ) |
| 31 | 30 | mpteq2ia | |- ( x e. ( A u. { B } ) |-> ( F ` x ) ) = ( x e. ( A u. { B } ) |-> if ( x = B , ( F ` B ) , ( F ` x ) ) ) |
| 32 | simpll | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> A C_ CC ) |
|
| 33 | 32 13 | sseldd | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> B e. CC ) |
| 34 | 25 1 31 12 32 33 | ellimc | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> ( ( F ` B ) e. ( F limCC B ) <-> ( x e. ( A u. { B } ) |-> ( F ` x ) ) e. ( ( ( K |`t ( A u. { B } ) ) CnP K ) ` B ) ) ) |
| 35 | 24 34 | bitr4d | |- ( ( ( A C_ CC /\ B e. A ) /\ F : A --> CC ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F ` B ) e. ( F limCC B ) ) ) |
| 36 | 35 | pm5.32da | |- ( ( A C_ CC /\ B e. A ) -> ( ( F : A --> CC /\ F e. ( ( J CnP K ) ` B ) ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |
| 37 | 11 36 | bitrd | |- ( ( A C_ CC /\ B e. A ) -> ( F e. ( ( J CnP K ) ` B ) <-> ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) |