This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limciccioolb.1 | |- ( ph -> A e. RR ) |
|
| limciccioolb.2 | |- ( ph -> B e. RR ) |
||
| limciccioolb.3 | |- ( ph -> A < B ) |
||
| limciccioolb.4 | |- ( ph -> F : ( A [,] B ) --> CC ) |
||
| Assertion | limciccioolb | |- ( ph -> ( ( F |` ( A (,) B ) ) limCC A ) = ( F limCC A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limciccioolb.1 | |- ( ph -> A e. RR ) |
|
| 2 | limciccioolb.2 | |- ( ph -> B e. RR ) |
|
| 3 | limciccioolb.3 | |- ( ph -> A < B ) |
|
| 4 | limciccioolb.4 | |- ( ph -> F : ( A [,] B ) --> CC ) |
|
| 5 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 6 | 5 | a1i | |- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 7 | 1 2 | iccssred | |- ( ph -> ( A [,] B ) C_ RR ) |
| 8 | ax-resscn | |- RR C_ CC |
|
| 9 | 7 8 | sstrdi | |- ( ph -> ( A [,] B ) C_ CC ) |
| 10 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 11 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) |
|
| 12 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 13 | 12 | a1i | |- ( ph -> ( topGen ` ran (,) ) e. Top ) |
| 14 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 15 | icossre | |- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR ) |
|
| 16 | 1 14 15 | syl2anc | |- ( ph -> ( A [,) B ) C_ RR ) |
| 17 | difssd | |- ( ph -> ( RR \ ( A [,] B ) ) C_ RR ) |
|
| 18 | 16 17 | unssd | |- ( ph -> ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR ) |
| 19 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 20 | 18 19 | sseqtrdi | |- ( ph -> ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) C_ U. ( topGen ` ran (,) ) ) |
| 21 | elioore | |- ( x e. ( -oo (,) B ) -> x e. RR ) |
|
| 22 | 21 | ad2antlr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> x e. RR ) |
| 23 | simpr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> A <_ x ) |
|
| 24 | simpr | |- ( ( ph /\ x e. ( -oo (,) B ) ) -> x e. ( -oo (,) B ) ) |
|
| 25 | mnfxr | |- -oo e. RR* |
|
| 26 | 25 | a1i | |- ( ( ph /\ x e. ( -oo (,) B ) ) -> -oo e. RR* ) |
| 27 | 14 | adantr | |- ( ( ph /\ x e. ( -oo (,) B ) ) -> B e. RR* ) |
| 28 | elioo2 | |- ( ( -oo e. RR* /\ B e. RR* ) -> ( x e. ( -oo (,) B ) <-> ( x e. RR /\ -oo < x /\ x < B ) ) ) |
|
| 29 | 26 27 28 | syl2anc | |- ( ( ph /\ x e. ( -oo (,) B ) ) -> ( x e. ( -oo (,) B ) <-> ( x e. RR /\ -oo < x /\ x < B ) ) ) |
| 30 | 24 29 | mpbid | |- ( ( ph /\ x e. ( -oo (,) B ) ) -> ( x e. RR /\ -oo < x /\ x < B ) ) |
| 31 | 30 | simp3d | |- ( ( ph /\ x e. ( -oo (,) B ) ) -> x < B ) |
| 32 | 31 | adantr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> x < B ) |
| 33 | 1 | ad2antrr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> A e. RR ) |
| 34 | 14 | ad2antrr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> B e. RR* ) |
| 35 | elico2 | |- ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
|
| 36 | 33 34 35 | syl2anc | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
| 37 | 22 23 32 36 | mpbir3and | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> x e. ( A [,) B ) ) |
| 38 | 37 | orcd | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> ( x e. ( A [,) B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
| 39 | 21 | ad2antlr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> x e. RR ) |
| 40 | simpr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> -. A <_ x ) |
|
| 41 | 40 | intnanrd | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> -. ( A <_ x /\ x <_ B ) ) |
| 42 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 43 | 42 | ad2antrr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> A e. RR* ) |
| 44 | 14 | ad2antrr | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> B e. RR* ) |
| 45 | 39 | rexrd | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> x e. RR* ) |
| 46 | elicc4 | |- ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) -> ( x e. ( A [,] B ) <-> ( A <_ x /\ x <_ B ) ) ) |
|
| 47 | 43 44 45 46 | syl3anc | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> ( x e. ( A [,] B ) <-> ( A <_ x /\ x <_ B ) ) ) |
| 48 | 41 47 | mtbird | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> -. x e. ( A [,] B ) ) |
| 49 | 39 48 | eldifd | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> x e. ( RR \ ( A [,] B ) ) ) |
| 50 | 49 | olcd | |- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> ( x e. ( A [,) B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
| 51 | 38 50 | pm2.61dan | |- ( ( ph /\ x e. ( -oo (,) B ) ) -> ( x e. ( A [,) B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
| 52 | elun | |- ( x e. ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) <-> ( x e. ( A [,) B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
|
| 53 | 51 52 | sylibr | |- ( ( ph /\ x e. ( -oo (,) B ) ) -> x e. ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
| 54 | 53 | ralrimiva | |- ( ph -> A. x e. ( -oo (,) B ) x e. ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
| 55 | dfss3 | |- ( ( -oo (,) B ) C_ ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) <-> A. x e. ( -oo (,) B ) x e. ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
|
| 56 | 54 55 | sylibr | |- ( ph -> ( -oo (,) B ) C_ ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
| 57 | eqid | |- U. ( topGen ` ran (,) ) = U. ( topGen ` ran (,) ) |
|
| 58 | 57 | ntrss | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) C_ U. ( topGen ` ran (,) ) /\ ( -oo (,) B ) C_ ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 59 | 13 20 56 58 | syl3anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 60 | 25 | a1i | |- ( ph -> -oo e. RR* ) |
| 61 | 1 | mnfltd | |- ( ph -> -oo < A ) |
| 62 | 60 14 1 61 3 | eliood | |- ( ph -> A e. ( -oo (,) B ) ) |
| 63 | iooretop | |- ( -oo (,) B ) e. ( topGen ` ran (,) ) |
|
| 64 | 63 | a1i | |- ( ph -> ( -oo (,) B ) e. ( topGen ` ran (,) ) ) |
| 65 | isopn3i | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( -oo (,) B ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) = ( -oo (,) B ) ) |
|
| 66 | 13 64 65 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) = ( -oo (,) B ) ) |
| 67 | 62 66 | eleqtrrd | |- ( ph -> A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) ) |
| 68 | 59 67 | sseldd | |- ( ph -> A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 69 | 1 | leidd | |- ( ph -> A <_ A ) |
| 70 | 1 2 3 | ltled | |- ( ph -> A <_ B ) |
| 71 | 1 2 1 69 70 | eliccd | |- ( ph -> A e. ( A [,] B ) ) |
| 72 | 68 71 | elind | |- ( ph -> A e. ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 73 | icossicc | |- ( A [,) B ) C_ ( A [,] B ) |
|
| 74 | 73 | a1i | |- ( ph -> ( A [,) B ) C_ ( A [,] B ) ) |
| 75 | eqid | |- ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
|
| 76 | 19 75 | restntr | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR /\ ( A [,) B ) C_ ( A [,] B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 77 | 13 7 74 76 | syl3anc | |- ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 78 | 72 77 | eleqtrrd | |- ( ph -> A e. ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) ) |
| 79 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 80 | 10 79 | rerest | |- ( ( A [,] B ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 81 | 7 80 | syl | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 82 | 81 | eqcomd | |- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
| 83 | 82 | fveq2d | |- ( ph -> ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ) |
| 84 | 83 | fveq1d | |- ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) ) |
| 85 | 78 84 | eleqtrd | |- ( ph -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) ) |
| 86 | 71 | snssd | |- ( ph -> { A } C_ ( A [,] B ) ) |
| 87 | ssequn2 | |- ( { A } C_ ( A [,] B ) <-> ( ( A [,] B ) u. { A } ) = ( A [,] B ) ) |
|
| 88 | 86 87 | sylib | |- ( ph -> ( ( A [,] B ) u. { A } ) = ( A [,] B ) ) |
| 89 | 88 | eqcomd | |- ( ph -> ( A [,] B ) = ( ( A [,] B ) u. { A } ) ) |
| 90 | 89 | oveq2d | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) ) |
| 91 | 90 | fveq2d | |- ( ph -> ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) ) ) |
| 92 | uncom | |- ( ( A (,) B ) u. { A } ) = ( { A } u. ( A (,) B ) ) |
|
| 93 | snunioo | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
|
| 94 | 42 14 3 93 | syl3anc | |- ( ph -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| 95 | 92 94 | eqtr2id | |- ( ph -> ( A [,) B ) = ( ( A (,) B ) u. { A } ) ) |
| 96 | 91 95 | fveq12d | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) ) ` ( ( A (,) B ) u. { A } ) ) ) |
| 97 | 85 96 | eleqtrd | |- ( ph -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) ) ` ( ( A (,) B ) u. { A } ) ) ) |
| 98 | 4 6 9 10 11 97 | limcres | |- ( ph -> ( ( F |` ( A (,) B ) ) limCC A ) = ( F limCC A ) ) |