This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrltne | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B =/= A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | |- ( A < B -> ( A < B \/ B < A ) ) |
|
| 2 | xrltso | |- < Or RR* |
|
| 3 | sotrieq | |- ( ( < Or RR* /\ ( A e. RR* /\ B e. RR* ) ) -> ( A = B <-> -. ( A < B \/ B < A ) ) ) |
|
| 4 | 2 3 | mpan | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> -. ( A < B \/ B < A ) ) ) |
| 5 | 4 | necon2abid | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A < B \/ B < A ) <-> A =/= B ) ) |
| 6 | 1 5 | imbitrid | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A =/= B ) ) |
| 7 | 6 | 3impia | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A =/= B ) |
| 8 | 7 | necomd | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B =/= A ) |