This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioo4g | |- ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooxr | |- ( C e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) |
|
| 2 | elioore | |- ( C e. ( A (,) B ) -> C e. RR ) |
|
| 3 | 1 2 | jca | |- ( C e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* ) /\ C e. RR ) ) |
| 4 | df-3an | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) <-> ( ( A e. RR* /\ B e. RR* ) /\ C e. RR ) ) |
|
| 5 | 3 4 | sylibr | |- ( C e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* /\ C e. RR ) ) |
| 6 | eliooord | |- ( C e. ( A (,) B ) -> ( A < C /\ C < B ) ) |
|
| 7 | 5 6 | jca | |- ( C e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) ) |
| 8 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 9 | 8 | 3anim3i | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
| 10 | 9 | anim1i | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C < B ) ) ) |
| 11 | elioo3g | |- ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C < B ) ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) -> C e. ( A (,) B ) ) |
| 13 | 7 12 | impbii | |- ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) ) |