This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfiooicc.x | |- F/ x ph |
|
| cncfiooicc.g | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
||
| cncfiooicc.a | |- ( ph -> A e. RR ) |
||
| cncfiooicc.b | |- ( ph -> B e. RR ) |
||
| cncfiooicc.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
||
| cncfiooicc.l | |- ( ph -> L e. ( F limCC B ) ) |
||
| cncfiooicc.r | |- ( ph -> R e. ( F limCC A ) ) |
||
| Assertion | cncfiooicc | |- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfiooicc.x | |- F/ x ph |
|
| 2 | cncfiooicc.g | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
|
| 3 | cncfiooicc.a | |- ( ph -> A e. RR ) |
|
| 4 | cncfiooicc.b | |- ( ph -> B e. RR ) |
|
| 5 | cncfiooicc.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 6 | cncfiooicc.l | |- ( ph -> L e. ( F limCC B ) ) |
|
| 7 | cncfiooicc.r | |- ( ph -> R e. ( F limCC A ) ) |
|
| 8 | nfv | |- F/ x ( ph /\ A < B ) |
|
| 9 | 3 | adantr | |- ( ( ph /\ A < B ) -> A e. RR ) |
| 10 | 4 | adantr | |- ( ( ph /\ A < B ) -> B e. RR ) |
| 11 | simpr | |- ( ( ph /\ A < B ) -> A < B ) |
|
| 12 | 5 | adantr | |- ( ( ph /\ A < B ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 13 | 6 | adantr | |- ( ( ph /\ A < B ) -> L e. ( F limCC B ) ) |
| 14 | 7 | adantr | |- ( ( ph /\ A < B ) -> R e. ( F limCC A ) ) |
| 15 | 8 2 9 10 11 12 13 14 | cncfiooicclem1 | |- ( ( ph /\ A < B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 16 | limccl | |- ( F limCC A ) C_ CC |
|
| 17 | 16 7 | sselid | |- ( ph -> R e. CC ) |
| 18 | 17 | snssd | |- ( ph -> { R } C_ CC ) |
| 19 | ssid | |- CC C_ CC |
|
| 20 | 19 | a1i | |- ( ph -> CC C_ CC ) |
| 21 | cncfss | |- ( ( { R } C_ CC /\ CC C_ CC ) -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) |
|
| 22 | 18 20 21 | syl2anc | |- ( ph -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ A = B ) -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) |
| 24 | 3 | rexrd | |- ( ph -> A e. RR* ) |
| 25 | iccid | |- ( A e. RR* -> ( A [,] A ) = { A } ) |
|
| 26 | 24 25 | syl | |- ( ph -> ( A [,] A ) = { A } ) |
| 27 | oveq2 | |- ( A = B -> ( A [,] A ) = ( A [,] B ) ) |
|
| 28 | 26 27 | sylan9req | |- ( ( ph /\ A = B ) -> { A } = ( A [,] B ) ) |
| 29 | 28 | eqcomd | |- ( ( ph /\ A = B ) -> ( A [,] B ) = { A } ) |
| 30 | simpr | |- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
|
| 31 | 29 | adantr | |- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> ( A [,] B ) = { A } ) |
| 32 | 30 31 | eleqtrd | |- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x e. { A } ) |
| 33 | elsni | |- ( x e. { A } -> x = A ) |
|
| 34 | 32 33 | syl | |- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x = A ) |
| 35 | 34 | iftrued | |- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 36 | 29 35 | mpteq12dva | |- ( ( ph /\ A = B ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. { A } |-> R ) ) |
| 37 | 2 36 | eqtrid | |- ( ( ph /\ A = B ) -> G = ( x e. { A } |-> R ) ) |
| 38 | 3 | recnd | |- ( ph -> A e. CC ) |
| 39 | 38 | adantr | |- ( ( ph /\ A = B ) -> A e. CC ) |
| 40 | 17 | adantr | |- ( ( ph /\ A = B ) -> R e. CC ) |
| 41 | cncfdmsn | |- ( ( A e. CC /\ R e. CC ) -> ( x e. { A } |-> R ) e. ( { A } -cn-> { R } ) ) |
|
| 42 | 39 40 41 | syl2anc | |- ( ( ph /\ A = B ) -> ( x e. { A } |-> R ) e. ( { A } -cn-> { R } ) ) |
| 43 | 37 42 | eqeltrd | |- ( ( ph /\ A = B ) -> G e. ( { A } -cn-> { R } ) ) |
| 44 | 23 43 | sseldd | |- ( ( ph /\ A = B ) -> G e. ( { A } -cn-> CC ) ) |
| 45 | 28 | oveq1d | |- ( ( ph /\ A = B ) -> ( { A } -cn-> CC ) = ( ( A [,] B ) -cn-> CC ) ) |
| 46 | 44 45 | eleqtrd | |- ( ( ph /\ A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 47 | 46 | adantlr | |- ( ( ( ph /\ -. A < B ) /\ A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 48 | simpll | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> ph ) |
|
| 49 | eqcom | |- ( B = A <-> A = B ) |
|
| 50 | 49 | biimpi | |- ( B = A -> A = B ) |
| 51 | 50 | con3i | |- ( -. A = B -> -. B = A ) |
| 52 | 51 | adantl | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. B = A ) |
| 53 | simplr | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. A < B ) |
|
| 54 | pm4.56 | |- ( ( -. B = A /\ -. A < B ) <-> -. ( B = A \/ A < B ) ) |
|
| 55 | 54 | biimpi | |- ( ( -. B = A /\ -. A < B ) -> -. ( B = A \/ A < B ) ) |
| 56 | 52 53 55 | syl2anc | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. ( B = A \/ A < B ) ) |
| 57 | 48 4 | syl | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> B e. RR ) |
| 58 | 48 3 | syl | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> A e. RR ) |
| 59 | 57 58 | lttrid | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> ( B < A <-> -. ( B = A \/ A < B ) ) ) |
| 60 | 56 59 | mpbird | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> B < A ) |
| 61 | 0ss | |- (/) C_ CC |
|
| 62 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 63 | 62 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 64 | rest0 | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t (/) ) = { (/) } ) |
|
| 65 | 63 64 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t (/) ) = { (/) } |
| 66 | 65 | eqcomi | |- { (/) } = ( ( TopOpen ` CCfld ) |`t (/) ) |
| 67 | 62 66 66 | cncfcn | |- ( ( (/) C_ CC /\ (/) C_ CC ) -> ( (/) -cn-> (/) ) = ( { (/) } Cn { (/) } ) ) |
| 68 | 61 61 67 | mp2an | |- ( (/) -cn-> (/) ) = ( { (/) } Cn { (/) } ) |
| 69 | cncfss | |- ( ( (/) C_ CC /\ CC C_ CC ) -> ( (/) -cn-> (/) ) C_ ( (/) -cn-> CC ) ) |
|
| 70 | 61 19 69 | mp2an | |- ( (/) -cn-> (/) ) C_ ( (/) -cn-> CC ) |
| 71 | 68 70 | eqsstrri | |- ( { (/) } Cn { (/) } ) C_ ( (/) -cn-> CC ) |
| 72 | 2 | a1i | |- ( ( ph /\ B < A ) -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
| 73 | simpr | |- ( ( ph /\ B < A ) -> B < A ) |
|
| 74 | 24 | adantr | |- ( ( ph /\ B < A ) -> A e. RR* ) |
| 75 | 4 | rexrd | |- ( ph -> B e. RR* ) |
| 76 | 75 | adantr | |- ( ( ph /\ B < A ) -> B e. RR* ) |
| 77 | icc0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
|
| 78 | 74 76 77 | syl2anc | |- ( ( ph /\ B < A ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 79 | 73 78 | mpbird | |- ( ( ph /\ B < A ) -> ( A [,] B ) = (/) ) |
| 80 | 79 | mpteq1d | |- ( ( ph /\ B < A ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
| 81 | mpt0 | |- ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = (/) |
|
| 82 | 81 | a1i | |- ( ( ph /\ B < A ) -> ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = (/) ) |
| 83 | 72 80 82 | 3eqtrd | |- ( ( ph /\ B < A ) -> G = (/) ) |
| 84 | 0cnf | |- (/) e. ( { (/) } Cn { (/) } ) |
|
| 85 | 83 84 | eqeltrdi | |- ( ( ph /\ B < A ) -> G e. ( { (/) } Cn { (/) } ) ) |
| 86 | 71 85 | sselid | |- ( ( ph /\ B < A ) -> G e. ( (/) -cn-> CC ) ) |
| 87 | 79 | eqcomd | |- ( ( ph /\ B < A ) -> (/) = ( A [,] B ) ) |
| 88 | 87 | oveq1d | |- ( ( ph /\ B < A ) -> ( (/) -cn-> CC ) = ( ( A [,] B ) -cn-> CC ) ) |
| 89 | 86 88 | eleqtrd | |- ( ( ph /\ B < A ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 90 | 48 60 89 | syl2anc | |- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 91 | 47 90 | pm2.61dan | |- ( ( ph /\ -. A < B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 92 | 15 91 | pm2.61dan | |- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |