This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ficard | |- ( A e. V -> ( A e. Fin <-> ( card ` A ) e. _om ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |
|
| 2 | carden | |- ( ( A e. V /\ x e. _om ) -> ( ( card ` A ) = ( card ` x ) <-> A ~~ x ) ) |
|
| 3 | cardnn | |- ( x e. _om -> ( card ` x ) = x ) |
|
| 4 | eqtr | |- ( ( ( card ` A ) = ( card ` x ) /\ ( card ` x ) = x ) -> ( card ` A ) = x ) |
|
| 5 | 4 | expcom | |- ( ( card ` x ) = x -> ( ( card ` A ) = ( card ` x ) -> ( card ` A ) = x ) ) |
| 6 | 3 5 | syl | |- ( x e. _om -> ( ( card ` A ) = ( card ` x ) -> ( card ` A ) = x ) ) |
| 7 | eleq1a | |- ( x e. _om -> ( ( card ` A ) = x -> ( card ` A ) e. _om ) ) |
|
| 8 | 6 7 | syld | |- ( x e. _om -> ( ( card ` A ) = ( card ` x ) -> ( card ` A ) e. _om ) ) |
| 9 | 8 | adantl | |- ( ( A e. V /\ x e. _om ) -> ( ( card ` A ) = ( card ` x ) -> ( card ` A ) e. _om ) ) |
| 10 | 2 9 | sylbird | |- ( ( A e. V /\ x e. _om ) -> ( A ~~ x -> ( card ` A ) e. _om ) ) |
| 11 | 10 | rexlimdva | |- ( A e. V -> ( E. x e. _om A ~~ x -> ( card ` A ) e. _om ) ) |
| 12 | 1 11 | biimtrid | |- ( A e. V -> ( A e. Fin -> ( card ` A ) e. _om ) ) |
| 13 | cardnn | |- ( ( card ` A ) e. _om -> ( card ` ( card ` A ) ) = ( card ` A ) ) |
|
| 14 | 13 | eqcomd | |- ( ( card ` A ) e. _om -> ( card ` A ) = ( card ` ( card ` A ) ) ) |
| 15 | 14 | adantl | |- ( ( A e. V /\ ( card ` A ) e. _om ) -> ( card ` A ) = ( card ` ( card ` A ) ) ) |
| 16 | carden | |- ( ( A e. V /\ ( card ` A ) e. _om ) -> ( ( card ` A ) = ( card ` ( card ` A ) ) <-> A ~~ ( card ` A ) ) ) |
|
| 17 | 15 16 | mpbid | |- ( ( A e. V /\ ( card ` A ) e. _om ) -> A ~~ ( card ` A ) ) |
| 18 | 17 | ex | |- ( A e. V -> ( ( card ` A ) e. _om -> A ~~ ( card ` A ) ) ) |
| 19 | 18 | ancld | |- ( A e. V -> ( ( card ` A ) e. _om -> ( ( card ` A ) e. _om /\ A ~~ ( card ` A ) ) ) ) |
| 20 | breq2 | |- ( x = ( card ` A ) -> ( A ~~ x <-> A ~~ ( card ` A ) ) ) |
|
| 21 | 20 | rspcev | |- ( ( ( card ` A ) e. _om /\ A ~~ ( card ` A ) ) -> E. x e. _om A ~~ x ) |
| 22 | 21 1 | sylibr | |- ( ( ( card ` A ) e. _om /\ A ~~ ( card ` A ) ) -> A e. Fin ) |
| 23 | 19 22 | syl6 | |- ( A e. V -> ( ( card ` A ) e. _om -> A e. Fin ) ) |
| 24 | 12 23 | impbid | |- ( A e. V -> ( A e. Fin <-> ( card ` A ) e. _om ) ) |