This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscard3 | |- ( ( card ` A ) = A <-> A e. ( _om u. ran aleph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon | |- ( card ` A ) e. On |
|
| 2 | eleq1 | |- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
|
| 3 | 1 2 | mpbii | |- ( ( card ` A ) = A -> A e. On ) |
| 4 | eloni | |- ( A e. On -> Ord A ) |
|
| 5 | 3 4 | syl | |- ( ( card ` A ) = A -> Ord A ) |
| 6 | ordom | |- Ord _om |
|
| 7 | ordtri2or | |- ( ( Ord A /\ Ord _om ) -> ( A e. _om \/ _om C_ A ) ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( card ` A ) = A -> ( A e. _om \/ _om C_ A ) ) |
| 9 | 8 | ord | |- ( ( card ` A ) = A -> ( -. A e. _om -> _om C_ A ) ) |
| 10 | isinfcard | |- ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph ) |
|
| 11 | 10 | biimpi | |- ( ( _om C_ A /\ ( card ` A ) = A ) -> A e. ran aleph ) |
| 12 | 11 | expcom | |- ( ( card ` A ) = A -> ( _om C_ A -> A e. ran aleph ) ) |
| 13 | 9 12 | syld | |- ( ( card ` A ) = A -> ( -. A e. _om -> A e. ran aleph ) ) |
| 14 | 13 | orrd | |- ( ( card ` A ) = A -> ( A e. _om \/ A e. ran aleph ) ) |
| 15 | cardnn | |- ( A e. _om -> ( card ` A ) = A ) |
|
| 16 | 10 | bicomi | |- ( A e. ran aleph <-> ( _om C_ A /\ ( card ` A ) = A ) ) |
| 17 | 16 | simprbi | |- ( A e. ran aleph -> ( card ` A ) = A ) |
| 18 | 15 17 | jaoi | |- ( ( A e. _om \/ A e. ran aleph ) -> ( card ` A ) = A ) |
| 19 | 14 18 | impbii | |- ( ( card ` A ) = A <-> ( A e. _om \/ A e. ran aleph ) ) |
| 20 | elun | |- ( A e. ( _om u. ran aleph ) <-> ( A e. _om \/ A e. ran aleph ) ) |
|
| 21 | 19 20 | bitr4i | |- ( ( card ` A ) = A <-> A e. ( _om u. ran aleph ) ) |