This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No successor is empty. (Contributed by NM, 3-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nsuceq0 | |- suc A =/= (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | |- -. A e. (/) |
|
| 2 | sucidg | |- ( A e. _V -> A e. suc A ) |
|
| 3 | eleq2 | |- ( suc A = (/) -> ( A e. suc A <-> A e. (/) ) ) |
|
| 4 | 2 3 | syl5ibcom | |- ( A e. _V -> ( suc A = (/) -> A e. (/) ) ) |
| 5 | 1 4 | mtoi | |- ( A e. _V -> -. suc A = (/) ) |
| 6 | 0ex | |- (/) e. _V |
|
| 7 | eleq1 | |- ( A = (/) -> ( A e. _V <-> (/) e. _V ) ) |
|
| 8 | 6 7 | mpbiri | |- ( A = (/) -> A e. _V ) |
| 9 | 8 | con3i | |- ( -. A e. _V -> -. A = (/) ) |
| 10 | sucprc | |- ( -. A e. _V -> suc A = A ) |
|
| 11 | 10 | eqeq1d | |- ( -. A e. _V -> ( suc A = (/) <-> A = (/) ) ) |
| 12 | 9 11 | mtbird | |- ( -. A e. _V -> -. suc A = (/) ) |
| 13 | 5 12 | pm2.61i | |- -. suc A = (/) |
| 14 | 13 | neir | |- suc A =/= (/) |