This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Order-preserving property of set exponentiation. Theorem 6L(d) of Enderton p. 149. (Contributed by NM, 23-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdom2 | |- ( ( A ~<_ B /\ -. ( A = (/) /\ C = (/) ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> C = (/) ) |
|
| 2 | 1 | oveq1d | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( C ^m A ) = ( (/) ^m A ) ) |
| 3 | simplr | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> -. ( A = (/) /\ C = (/) ) ) |
|
| 4 | idd | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( A = (/) -> A = (/) ) ) |
|
| 5 | 4 1 | jctird | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( A = (/) -> ( A = (/) /\ C = (/) ) ) ) |
| 6 | 3 5 | mtod | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> -. A = (/) ) |
| 7 | 6 | neqned | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> A =/= (/) ) |
| 8 | map0b | |- ( A =/= (/) -> ( (/) ^m A ) = (/) ) |
|
| 9 | 7 8 | syl | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( (/) ^m A ) = (/) ) |
| 10 | 2 9 | eqtrd | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( C ^m A ) = (/) ) |
| 11 | ovex | |- ( C ^m B ) e. _V |
|
| 12 | 11 | 0dom | |- (/) ~<_ ( C ^m B ) |
| 13 | 10 12 | eqbrtrdi | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
| 14 | simpll | |- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> A ~<_ B ) |
|
| 15 | reldom | |- Rel ~<_ |
|
| 16 | 15 | brrelex2i | |- ( A ~<_ B -> B e. _V ) |
| 17 | 16 | ad2antrr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> B e. _V ) |
| 18 | domeng | |- ( B e. _V -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
|
| 19 | 17 18 | syl | |- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
| 20 | 14 19 | mpbid | |- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> E. x ( A ~~ x /\ x C_ B ) ) |
| 21 | enrefg | |- ( C e. _V -> C ~~ C ) |
|
| 22 | 21 | ad2antlr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> C ~~ C ) |
| 23 | simprrl | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> A ~~ x ) |
|
| 24 | mapen | |- ( ( C ~~ C /\ A ~~ x ) -> ( C ^m A ) ~~ ( C ^m x ) ) |
|
| 25 | 22 23 24 | syl2anc | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m A ) ~~ ( C ^m x ) ) |
| 26 | ovexd | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m x ) e. _V ) |
|
| 27 | ovexd | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m ( B \ x ) ) e. _V ) |
|
| 28 | simprl | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> C =/= (/) ) |
|
| 29 | simplr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> C e. _V ) |
|
| 30 | 16 | ad2antrr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> B e. _V ) |
| 31 | 30 | difexd | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( B \ x ) e. _V ) |
| 32 | map0g | |- ( ( C e. _V /\ ( B \ x ) e. _V ) -> ( ( C ^m ( B \ x ) ) = (/) <-> ( C = (/) /\ ( B \ x ) =/= (/) ) ) ) |
|
| 33 | simpl | |- ( ( C = (/) /\ ( B \ x ) =/= (/) ) -> C = (/) ) |
|
| 34 | 32 33 | biimtrdi | |- ( ( C e. _V /\ ( B \ x ) e. _V ) -> ( ( C ^m ( B \ x ) ) = (/) -> C = (/) ) ) |
| 35 | 34 | necon3d | |- ( ( C e. _V /\ ( B \ x ) e. _V ) -> ( C =/= (/) -> ( C ^m ( B \ x ) ) =/= (/) ) ) |
| 36 | 29 31 35 | syl2anc | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C =/= (/) -> ( C ^m ( B \ x ) ) =/= (/) ) ) |
| 37 | 28 36 | mpd | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m ( B \ x ) ) =/= (/) ) |
| 38 | xpdom3 | |- ( ( ( C ^m x ) e. _V /\ ( C ^m ( B \ x ) ) e. _V /\ ( C ^m ( B \ x ) ) =/= (/) ) -> ( C ^m x ) ~<_ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ) |
|
| 39 | 26 27 37 38 | syl3anc | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m x ) ~<_ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ) |
| 40 | vex | |- x e. _V |
|
| 41 | 40 | a1i | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> x e. _V ) |
| 42 | disjdif | |- ( x i^i ( B \ x ) ) = (/) |
|
| 43 | 42 | a1i | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( x i^i ( B \ x ) ) = (/) ) |
| 44 | mapunen | |- ( ( ( x e. _V /\ ( B \ x ) e. _V /\ C e. _V ) /\ ( x i^i ( B \ x ) ) = (/) ) -> ( C ^m ( x u. ( B \ x ) ) ) ~~ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ) |
|
| 45 | 41 31 29 43 44 | syl31anc | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m ( x u. ( B \ x ) ) ) ~~ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ) |
| 46 | 45 | ensymd | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ~~ ( C ^m ( x u. ( B \ x ) ) ) ) |
| 47 | simprrr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> x C_ B ) |
|
| 48 | undif | |- ( x C_ B <-> ( x u. ( B \ x ) ) = B ) |
|
| 49 | 47 48 | sylib | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( x u. ( B \ x ) ) = B ) |
| 50 | 49 | oveq2d | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m ( x u. ( B \ x ) ) ) = ( C ^m B ) ) |
| 51 | 46 50 | breqtrd | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ~~ ( C ^m B ) ) |
| 52 | domentr | |- ( ( ( C ^m x ) ~<_ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) /\ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ~~ ( C ^m B ) ) -> ( C ^m x ) ~<_ ( C ^m B ) ) |
|
| 53 | 39 51 52 | syl2anc | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m x ) ~<_ ( C ^m B ) ) |
| 54 | endomtr | |- ( ( ( C ^m A ) ~~ ( C ^m x ) /\ ( C ^m x ) ~<_ ( C ^m B ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
|
| 55 | 25 53 54 | syl2anc | |- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
| 56 | 55 | expr | |- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> ( ( A ~~ x /\ x C_ B ) -> ( C ^m A ) ~<_ ( C ^m B ) ) ) |
| 57 | 56 | exlimdv | |- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> ( E. x ( A ~~ x /\ x C_ B ) -> ( C ^m A ) ~<_ ( C ^m B ) ) ) |
| 58 | 20 57 | mpd | |- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
| 59 | 58 | adantlr | |- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C =/= (/) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
| 60 | 13 59 | pm2.61dane | |- ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
| 61 | 60 | an32s | |- ( ( ( A ~<_ B /\ -. ( A = (/) /\ C = (/) ) ) /\ C e. _V ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
| 62 | 61 | ex | |- ( ( A ~<_ B /\ -. ( A = (/) /\ C = (/) ) ) -> ( C e. _V -> ( C ^m A ) ~<_ ( C ^m B ) ) ) |
| 63 | reldmmap | |- Rel dom ^m |
|
| 64 | 63 | ovprc1 | |- ( -. C e. _V -> ( C ^m A ) = (/) ) |
| 65 | 64 12 | eqbrtrdi | |- ( -. C e. _V -> ( C ^m A ) ~<_ ( C ^m B ) ) |
| 66 | 62 65 | pm2.61d1 | |- ( ( A ~<_ B /\ -. ( A = (/) /\ C = (/) ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |