This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dom0 | |- ( A ~<_ (/) <-> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | |- ( A ~<_ (/) -> E. f f : A -1-1-> (/) ) |
|
| 2 | f1f | |- ( f : A -1-1-> (/) -> f : A --> (/) ) |
|
| 3 | f00 | |- ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) ) |
|
| 4 | 3 | simprbi | |- ( f : A --> (/) -> A = (/) ) |
| 5 | 2 4 | syl | |- ( f : A -1-1-> (/) -> A = (/) ) |
| 6 | 5 | exlimiv | |- ( E. f f : A -1-1-> (/) -> A = (/) ) |
| 7 | 1 6 | syl | |- ( A ~<_ (/) -> A = (/) ) |
| 8 | en0 | |- ( A ~~ (/) <-> A = (/) ) |
|
| 9 | endom | |- ( A ~~ (/) -> A ~<_ (/) ) |
|
| 10 | 8 9 | sylbir | |- ( A = (/) -> A ~<_ (/) ) |
| 11 | 7 10 | impbii | |- ( A ~<_ (/) <-> A = (/) ) |