This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From canth2 , we know that ( aleph0 ) < ( 2 ^om ) , but we cannot prove that ( 2 ^ om ) = ( aleph1 ) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement ( alephA ) < ( 2 ^om ) is consistent for any ordinal A ). However, we can prove that ( 2 ^ om ) is not equal to ( aleph_om ) , nor ( aleph( aleph_om ) ) , on cofinality grounds, because by Konig's Theorem konigth (in the form of cfpwsdom ), ( 2 ^om ) has uncountable cofinality, which eliminates limit alephs like ( alephom ) . (The first limit aleph that is not eliminated is ( aleph( aleph1 ) ) , which has cofinality ( aleph1 ) .) (Contributed by Mario Carneiro, 21-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephom | |- ( card ` ( 2o ^m _om ) ) =/= ( aleph ` _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomirr | |- -. _om ~< _om |
|
| 2 | 2onn | |- 2o e. _om |
|
| 3 | 2 | elexi | |- 2o e. _V |
| 4 | domrefg | |- ( 2o e. _V -> 2o ~<_ 2o ) |
|
| 5 | 3 | cfpwsdom | |- ( 2o ~<_ 2o -> ( aleph ` (/) ) ~< ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) ) |
| 6 | 3 4 5 | mp2b | |- ( aleph ` (/) ) ~< ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) |
| 7 | aleph0 | |- ( aleph ` (/) ) = _om |
|
| 8 | 7 | a1i | |- ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( aleph ` (/) ) = _om ) |
| 9 | 7 | oveq2i | |- ( 2o ^m ( aleph ` (/) ) ) = ( 2o ^m _om ) |
| 10 | 9 | fveq2i | |- ( card ` ( 2o ^m ( aleph ` (/) ) ) ) = ( card ` ( 2o ^m _om ) ) |
| 11 | 10 | eqeq1i | |- ( ( card ` ( 2o ^m ( aleph ` (/) ) ) ) = ( aleph ` _om ) <-> ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) ) |
| 12 | 11 | biimpri | |- ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( card ` ( 2o ^m ( aleph ` (/) ) ) ) = ( aleph ` _om ) ) |
| 13 | 12 | fveq2d | |- ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) = ( cf ` ( aleph ` _om ) ) ) |
| 14 | limom | |- Lim _om |
|
| 15 | alephsing | |- ( Lim _om -> ( cf ` ( aleph ` _om ) ) = ( cf ` _om ) ) |
|
| 16 | 14 15 | ax-mp | |- ( cf ` ( aleph ` _om ) ) = ( cf ` _om ) |
| 17 | cfom | |- ( cf ` _om ) = _om |
|
| 18 | 16 17 | eqtri | |- ( cf ` ( aleph ` _om ) ) = _om |
| 19 | 13 18 | eqtrdi | |- ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) = _om ) |
| 20 | 8 19 | breq12d | |- ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( ( aleph ` (/) ) ~< ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) <-> _om ~< _om ) ) |
| 21 | 6 20 | mpbii | |- ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> _om ~< _om ) |
| 22 | 21 | necon3bi | |- ( -. _om ~< _om -> ( card ` ( 2o ^m _om ) ) =/= ( aleph ` _om ) ) |
| 23 | 1 22 | ax-mp | |- ( card ` ( 2o ^m _om ) ) =/= ( aleph ` _om ) |