This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvso | |- ( R Or A <-> `' R Or A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvpo | |- ( R Po A <-> `' R Po A ) |
|
| 2 | ralcom | |- ( A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) <-> A. y e. A A. x e. A ( x R y \/ x = y \/ y R x ) ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | vex | |- x e. _V |
|
| 5 | 3 4 | brcnv | |- ( y `' R x <-> x R y ) |
| 6 | equcom | |- ( y = x <-> x = y ) |
|
| 7 | 4 3 | brcnv | |- ( x `' R y <-> y R x ) |
| 8 | 5 6 7 | 3orbi123i | |- ( ( y `' R x \/ y = x \/ x `' R y ) <-> ( x R y \/ x = y \/ y R x ) ) |
| 9 | 8 | 2ralbii | |- ( A. y e. A A. x e. A ( y `' R x \/ y = x \/ x `' R y ) <-> A. y e. A A. x e. A ( x R y \/ x = y \/ y R x ) ) |
| 10 | 2 9 | bitr4i | |- ( A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) <-> A. y e. A A. x e. A ( y `' R x \/ y = x \/ x `' R y ) ) |
| 11 | 1 10 | anbi12i | |- ( ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) <-> ( `' R Po A /\ A. y e. A A. x e. A ( y `' R x \/ y = x \/ x `' R y ) ) ) |
| 12 | df-so | |- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
|
| 13 | df-so | |- ( `' R Or A <-> ( `' R Po A /\ A. y e. A A. x e. A ( y `' R x \/ y = x \/ x `' R y ) ) ) |
|
| 14 | 11 12 13 | 3bitr4i | |- ( R Or A <-> `' R Or A ) |