This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty class exists. Exercise 5 of TakeutiZaring p. 44 and its converse. (Contributed by NM, 13-Aug-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intex | |- ( A =/= (/) <-> |^| A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 2 | intss1 | |- ( x e. A -> |^| A C_ x ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | 3 | ssex | |- ( |^| A C_ x -> |^| A e. _V ) |
| 5 | 2 4 | syl | |- ( x e. A -> |^| A e. _V ) |
| 6 | 5 | exlimiv | |- ( E. x x e. A -> |^| A e. _V ) |
| 7 | 1 6 | sylbi | |- ( A =/= (/) -> |^| A e. _V ) |
| 8 | vprc | |- -. _V e. _V |
|
| 9 | inteq | |- ( A = (/) -> |^| A = |^| (/) ) |
|
| 10 | int0 | |- |^| (/) = _V |
|
| 11 | 9 10 | eqtrdi | |- ( A = (/) -> |^| A = _V ) |
| 12 | 11 | eleq1d | |- ( A = (/) -> ( |^| A e. _V <-> _V e. _V ) ) |
| 13 | 8 12 | mtbiri | |- ( A = (/) -> -. |^| A e. _V ) |
| 14 | 13 | necon2ai | |- ( |^| A e. _V -> A =/= (/) ) |
| 15 | 7 14 | impbii | |- ( A =/= (/) <-> |^| A e. _V ) |