This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of TakeutiZaring p. 85. (Contributed by Mario Carneiro, 7-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardid2 | |- ( A e. dom card -> ( card ` A ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardval3 | |- ( A e. dom card -> ( card ` A ) = |^| { y e. On | y ~~ A } ) |
|
| 2 | ssrab2 | |- { y e. On | y ~~ A } C_ On |
|
| 3 | fvex | |- ( card ` A ) e. _V |
|
| 4 | 1 3 | eqeltrrdi | |- ( A e. dom card -> |^| { y e. On | y ~~ A } e. _V ) |
| 5 | intex | |- ( { y e. On | y ~~ A } =/= (/) <-> |^| { y e. On | y ~~ A } e. _V ) |
|
| 6 | 4 5 | sylibr | |- ( A e. dom card -> { y e. On | y ~~ A } =/= (/) ) |
| 7 | onint | |- ( ( { y e. On | y ~~ A } C_ On /\ { y e. On | y ~~ A } =/= (/) ) -> |^| { y e. On | y ~~ A } e. { y e. On | y ~~ A } ) |
|
| 8 | 2 6 7 | sylancr | |- ( A e. dom card -> |^| { y e. On | y ~~ A } e. { y e. On | y ~~ A } ) |
| 9 | 1 8 | eqeltrd | |- ( A e. dom card -> ( card ` A ) e. { y e. On | y ~~ A } ) |
| 10 | breq1 | |- ( y = ( card ` A ) -> ( y ~~ A <-> ( card ` A ) ~~ A ) ) |
|
| 11 | 10 | elrab | |- ( ( card ` A ) e. { y e. On | y ~~ A } <-> ( ( card ` A ) e. On /\ ( card ` A ) ~~ A ) ) |
| 12 | 11 | simprbi | |- ( ( card ` A ) e. { y e. On | y ~~ A } -> ( card ` A ) ~~ A ) |
| 13 | 9 12 | syl | |- ( A e. dom card -> ( card ` A ) ~~ A ) |