This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993) Avoid ax-12 . (Revised by SN, 27-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssel | |- ( A C_ B -> ( C e. A -> C e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 2 | id | |- ( ( x e. A -> x e. B ) -> ( x e. A -> x e. B ) ) |
|
| 3 | 2 | anim2d | |- ( ( x e. A -> x e. B ) -> ( ( x = C /\ x e. A ) -> ( x = C /\ x e. B ) ) ) |
| 4 | 3 | aleximi | |- ( A. x ( x e. A -> x e. B ) -> ( E. x ( x = C /\ x e. A ) -> E. x ( x = C /\ x e. B ) ) ) |
| 5 | dfclel | |- ( C e. A <-> E. x ( x = C /\ x e. A ) ) |
|
| 6 | dfclel | |- ( C e. B <-> E. x ( x = C /\ x e. B ) ) |
|
| 7 | 4 5 6 | 3imtr4g | |- ( A. x ( x e. A -> x e. B ) -> ( C e. A -> C e. B ) ) |
| 8 | 1 7 | sylbi | |- ( A C_ B -> ( C e. A -> C e. B ) ) |