This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cff | |- cf : On --> On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cf | |- cf = ( x e. On |-> |^| { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) } ) |
|
| 2 | cardon | |- ( card ` z ) e. On |
|
| 3 | eleq1 | |- ( y = ( card ` z ) -> ( y e. On <-> ( card ` z ) e. On ) ) |
|
| 4 | 2 3 | mpbiri | |- ( y = ( card ` z ) -> y e. On ) |
| 5 | 4 | adantr | |- ( ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) -> y e. On ) |
| 6 | 5 | exlimiv | |- ( E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) -> y e. On ) |
| 7 | 6 | abssi | |- { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) } C_ On |
| 8 | cflem | |- ( x e. On -> E. y E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) ) |
|
| 9 | abn0 | |- ( { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) } =/= (/) <-> E. y E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) ) |
|
| 10 | 8 9 | sylibr | |- ( x e. On -> { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) } =/= (/) ) |
| 11 | oninton | |- ( ( { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) } C_ On /\ { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) } =/= (/) ) -> |^| { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) } e. On ) |
|
| 12 | 7 10 11 | sylancr | |- ( x e. On -> |^| { y | E. z ( y = ( card ` z ) /\ ( z C_ x /\ A. w e. x E. v e. z w C_ v ) ) } e. On ) |
| 13 | 1 12 | fmpti | |- cf : On --> On |