This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of TakeutiZaring p. 45. (Contributed by NM, 31-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onint | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon | |- Ord On |
|
| 2 | tz7.5 | |- ( ( Ord On /\ A C_ On /\ A =/= (/) ) -> E. x e. A ( A i^i x ) = (/) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( A C_ On /\ A =/= (/) ) -> E. x e. A ( A i^i x ) = (/) ) |
| 4 | ssel | |- ( A C_ On -> ( x e. A -> x e. On ) ) |
|
| 5 | 4 | imdistani | |- ( ( A C_ On /\ x e. A ) -> ( A C_ On /\ x e. On ) ) |
| 6 | ssel | |- ( A C_ On -> ( z e. A -> z e. On ) ) |
|
| 7 | ontri1 | |- ( ( x e. On /\ z e. On ) -> ( x C_ z <-> -. z e. x ) ) |
|
| 8 | ssel | |- ( x C_ z -> ( y e. x -> y e. z ) ) |
|
| 9 | 7 8 | biimtrrdi | |- ( ( x e. On /\ z e. On ) -> ( -. z e. x -> ( y e. x -> y e. z ) ) ) |
| 10 | 9 | ex | |- ( x e. On -> ( z e. On -> ( -. z e. x -> ( y e. x -> y e. z ) ) ) ) |
| 11 | 6 10 | sylan9 | |- ( ( A C_ On /\ x e. On ) -> ( z e. A -> ( -. z e. x -> ( y e. x -> y e. z ) ) ) ) |
| 12 | 11 | com4r | |- ( y e. x -> ( ( A C_ On /\ x e. On ) -> ( z e. A -> ( -. z e. x -> y e. z ) ) ) ) |
| 13 | 12 | imp31 | |- ( ( ( y e. x /\ ( A C_ On /\ x e. On ) ) /\ z e. A ) -> ( -. z e. x -> y e. z ) ) |
| 14 | 13 | ralimdva | |- ( ( y e. x /\ ( A C_ On /\ x e. On ) ) -> ( A. z e. A -. z e. x -> A. z e. A y e. z ) ) |
| 15 | disj | |- ( ( A i^i x ) = (/) <-> A. z e. A -. z e. x ) |
|
| 16 | vex | |- y e. _V |
|
| 17 | 16 | elint2 | |- ( y e. |^| A <-> A. z e. A y e. z ) |
| 18 | 14 15 17 | 3imtr4g | |- ( ( y e. x /\ ( A C_ On /\ x e. On ) ) -> ( ( A i^i x ) = (/) -> y e. |^| A ) ) |
| 19 | 5 18 | sylan2 | |- ( ( y e. x /\ ( A C_ On /\ x e. A ) ) -> ( ( A i^i x ) = (/) -> y e. |^| A ) ) |
| 20 | 19 | exp32 | |- ( y e. x -> ( A C_ On -> ( x e. A -> ( ( A i^i x ) = (/) -> y e. |^| A ) ) ) ) |
| 21 | 20 | com4l | |- ( A C_ On -> ( x e. A -> ( ( A i^i x ) = (/) -> ( y e. x -> y e. |^| A ) ) ) ) |
| 22 | 21 | imp32 | |- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> ( y e. x -> y e. |^| A ) ) |
| 23 | 22 | ssrdv | |- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> x C_ |^| A ) |
| 24 | intss1 | |- ( x e. A -> |^| A C_ x ) |
|
| 25 | 24 | ad2antrl | |- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> |^| A C_ x ) |
| 26 | 23 25 | eqssd | |- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> x = |^| A ) |
| 27 | 26 | eleq1d | |- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> ( x e. A <-> |^| A e. A ) ) |
| 28 | 27 | biimpd | |- ( ( A C_ On /\ ( x e. A /\ ( A i^i x ) = (/) ) ) -> ( x e. A -> |^| A e. A ) ) |
| 29 | 28 | exp32 | |- ( A C_ On -> ( x e. A -> ( ( A i^i x ) = (/) -> ( x e. A -> |^| A e. A ) ) ) ) |
| 30 | 29 | com34 | |- ( A C_ On -> ( x e. A -> ( x e. A -> ( ( A i^i x ) = (/) -> |^| A e. A ) ) ) ) |
| 31 | 30 | pm2.43d | |- ( A C_ On -> ( x e. A -> ( ( A i^i x ) = (/) -> |^| A e. A ) ) ) |
| 32 | 31 | rexlimdv | |- ( A C_ On -> ( E. x e. A ( A i^i x ) = (/) -> |^| A e. A ) ) |
| 33 | 3 32 | syl5 | |- ( A C_ On -> ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) ) |
| 34 | 33 | anabsi5 | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |