This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onssnum | |- ( ( A e. V /\ A C_ On ) -> A e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg | |- ( A e. V -> U. A e. _V ) |
|
| 2 | ssorduni | |- ( A C_ On -> Ord U. A ) |
|
| 3 | elong | |- ( U. A e. _V -> ( U. A e. On <-> Ord U. A ) ) |
|
| 4 | 3 | biimpar | |- ( ( U. A e. _V /\ Ord U. A ) -> U. A e. On ) |
| 5 | 1 2 4 | syl2an | |- ( ( A e. V /\ A C_ On ) -> U. A e. On ) |
| 6 | onsuc | |- ( U. A e. On -> suc U. A e. On ) |
|
| 7 | onenon | |- ( suc U. A e. On -> suc U. A e. dom card ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( A e. V /\ A C_ On ) -> suc U. A e. dom card ) |
| 9 | onsucuni | |- ( A C_ On -> A C_ suc U. A ) |
|
| 10 | 9 | adantl | |- ( ( A e. V /\ A C_ On ) -> A C_ suc U. A ) |
| 11 | ssnum | |- ( ( suc U. A e. dom card /\ A C_ suc U. A ) -> A e. dom card ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( A e. V /\ A C_ On ) -> A e. dom card ) |