This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of Schloeder p. 2. (Contributed by NM, 1-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordzsl | |- ( Ord A <-> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduninsuc | |- ( Ord A -> ( A = U. A <-> -. E. x e. On A = suc x ) ) |
|
| 2 | 1 | biimprd | |- ( Ord A -> ( -. E. x e. On A = suc x -> A = U. A ) ) |
| 3 | unizlim | |- ( Ord A -> ( A = U. A <-> ( A = (/) \/ Lim A ) ) ) |
|
| 4 | 2 3 | sylibd | |- ( Ord A -> ( -. E. x e. On A = suc x -> ( A = (/) \/ Lim A ) ) ) |
| 5 | 4 | orrd | |- ( Ord A -> ( E. x e. On A = suc x \/ ( A = (/) \/ Lim A ) ) ) |
| 6 | 3orass | |- ( ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) <-> ( A = (/) \/ ( E. x e. On A = suc x \/ Lim A ) ) ) |
|
| 7 | or12 | |- ( ( A = (/) \/ ( E. x e. On A = suc x \/ Lim A ) ) <-> ( E. x e. On A = suc x \/ ( A = (/) \/ Lim A ) ) ) |
|
| 8 | 6 7 | bitri | |- ( ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) <-> ( E. x e. On A = suc x \/ ( A = (/) \/ Lim A ) ) ) |
| 9 | 5 8 | sylibr | |- ( Ord A -> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |
| 10 | ord0 | |- Ord (/) |
|
| 11 | ordeq | |- ( A = (/) -> ( Ord A <-> Ord (/) ) ) |
|
| 12 | 10 11 | mpbiri | |- ( A = (/) -> Ord A ) |
| 13 | onsuc | |- ( x e. On -> suc x e. On ) |
|
| 14 | eleq1 | |- ( A = suc x -> ( A e. On <-> suc x e. On ) ) |
|
| 15 | 13 14 | imbitrrid | |- ( A = suc x -> ( x e. On -> A e. On ) ) |
| 16 | eloni | |- ( A e. On -> Ord A ) |
|
| 17 | 15 16 | syl6com | |- ( x e. On -> ( A = suc x -> Ord A ) ) |
| 18 | 17 | rexlimiv | |- ( E. x e. On A = suc x -> Ord A ) |
| 19 | limord | |- ( Lim A -> Ord A ) |
|
| 20 | 12 18 19 | 3jaoi | |- ( ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) -> Ord A ) |
| 21 | 9 20 | impbii | |- ( Ord A <-> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |