This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cflim3.1 | |- A e. _V |
|
| Assertion | cflim3 | |- ( Lim A -> ( cf ` A ) = |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cflim3.1 | |- A e. _V |
|
| 2 | limord | |- ( Lim A -> Ord A ) |
|
| 3 | 1 | elon | |- ( A e. On <-> Ord A ) |
| 4 | 2 3 | sylibr | |- ( Lim A -> A e. On ) |
| 5 | cfval | |- ( A e. On -> ( cf ` A ) = |^| { y | E. x ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) } ) |
|
| 6 | 4 5 | syl | |- ( Lim A -> ( cf ` A ) = |^| { y | E. x ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) } ) |
| 7 | fvex | |- ( card ` x ) e. _V |
|
| 8 | 7 | dfiin2 | |- |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) = |^| { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } |
| 9 | df-rex | |- ( E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) <-> E. x ( x e. { x e. ~P A | U. x = A } /\ y = ( card ` x ) ) ) |
|
| 10 | ancom | |- ( ( x e. { x e. ~P A | U. x = A } /\ y = ( card ` x ) ) <-> ( y = ( card ` x ) /\ x e. { x e. ~P A | U. x = A } ) ) |
|
| 11 | rabid | |- ( x e. { x e. ~P A | U. x = A } <-> ( x e. ~P A /\ U. x = A ) ) |
|
| 12 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 13 | 12 | anbi1i | |- ( ( x e. ~P A /\ U. x = A ) <-> ( x C_ A /\ U. x = A ) ) |
| 14 | coflim | |- ( ( Lim A /\ x C_ A ) -> ( U. x = A <-> A. z e. A E. w e. x z C_ w ) ) |
|
| 15 | 14 | pm5.32da | |- ( Lim A -> ( ( x C_ A /\ U. x = A ) <-> ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) ) |
| 16 | 13 15 | bitrid | |- ( Lim A -> ( ( x e. ~P A /\ U. x = A ) <-> ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) ) |
| 17 | 11 16 | bitrid | |- ( Lim A -> ( x e. { x e. ~P A | U. x = A } <-> ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) ) |
| 18 | 17 | anbi2d | |- ( Lim A -> ( ( y = ( card ` x ) /\ x e. { x e. ~P A | U. x = A } ) <-> ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) ) ) |
| 19 | 10 18 | bitrid | |- ( Lim A -> ( ( x e. { x e. ~P A | U. x = A } /\ y = ( card ` x ) ) <-> ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) ) ) |
| 20 | 19 | exbidv | |- ( Lim A -> ( E. x ( x e. { x e. ~P A | U. x = A } /\ y = ( card ` x ) ) <-> E. x ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) ) ) |
| 21 | 9 20 | bitrid | |- ( Lim A -> ( E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) <-> E. x ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) ) ) |
| 22 | 21 | abbidv | |- ( Lim A -> { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } = { y | E. x ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) } ) |
| 23 | 22 | inteqd | |- ( Lim A -> |^| { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } = |^| { y | E. x ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) } ) |
| 24 | 8 23 | eqtr2id | |- ( Lim A -> |^| { y | E. x ( y = ( card ` x ) /\ ( x C_ A /\ A. z e. A E. w e. x z C_ w ) ) } = |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) ) |
| 25 | 6 24 | eqtrd | |- ( Lim A -> ( cf ` A ) = |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) ) |